Chemical Structure of MS-Polypropylene Thermo Plastic Elastomer

LIU Yong-chao, SUN Chang-hong, SUN Wei-yun, JIN Yu-xia, ZHANG Lei

PDF(1003 KB)
PDF(1003 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (05) : 66-70. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.014
Processing and Application

Chemical Structure of MS-Polypropylene Thermo Plastic Elastomer

Author information +
History +

Abstract

The phase structure of polypropylene thermoplastic elastomer (PTPE) is always a multiphase system in the preparation process. Under the condition of limited compatibility between polypropylene (PP) and elastomer, it is difficult to control the dispersion uniformity, size and morphology of each component domain between PP and elastomer. In order to make PTPE have homogeneous domains, easily controlled morphology and structure, and stable mechanical properties, microphase separation PP thermoplastic elastomer (MS-PTPE) was prepared based on the homogeneous system of PP and elastomer, and the chemical structure of MS-PTPE was studied by fractional extraction method. The results show that MS-PTPE is composed of unreacted PP, unreacted elastomer, graft copolymer of PP and (or) elastomer with bridging agent chain, and crosslink between elastomer and PP macromolecules with polymeric bridging chain formed by bridging agent. The chemical structure of MS-PTPE was significantly affected by different proportion of elastomer, different dosage of initiator and different dosage of bridging agent, and there was a certain synergistic effect between the dosage of initiator and bridging agent.

Key words

MS-PTPE / Chemical structure / Hierarchical extraction

Cite this article

Download Citations
LIU Yong-chao , SUN Chang-hong , SUN Wei-yun , et al . Chemical Structure of MS-Polypropylene Thermo Plastic Elastomer. Plastics Science and Technology. 2024, 52(05): 66-70 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.014

References

1
MOHITE A S, RAJPURKAR Y D, MORE A P. Bridging the gap between rubbers and plastics: A review on thermoplastic polyolefin elastomers[J]. Polymer Bulletin, 2022, 79: 1309-1343.
2
郭利健,汲智如,胡亚泽.马来酸酐接枝EPDM改性聚丙烯的制备及性能研究[J].塑料科技,2020,48(4):20-23.
3
HAMED H K, VAHID M, MASOUD M, et al. Morphological, rheological, and mechanical properties of ethylene propylene diene monomer/carboxylated styrene-butadiene rubber/multiwall carbon nanotube nanocomposites[J]. International Journal of Polymer Analysis and Characterization, 2020, DOI: 10.1080/1023666X.2020.1807681.
4
SAHA S, BHOWMICK A K. Computer simulation of thermoplastic elastomers from rubber-plastic blends and comparison with experiments[J]. Polymer, 2016, DOI: 10.1016/j.polymer.2016.09.065.
5
RAFAEL B, O. E G B, D. J A. Flexible, high-density and water- resistant polypropylene/thermoplastic elastomer/inorganic fillers composites[J]. Macromolecular Symposia, 2020, DOI: 10.1002/masy.202000132.
6
赵聪,郑金华,陈笑微,等.无卤阻燃型EPDM材料和EPDM/PP TPV复合材料等胶料性能的研究进展[J].橡塑技术与装备,2018,44(23):31-42.
7
SAFFARI A, SHEIKH A. Peroxide dynamic crosslinking in impact modification of polypropylene with polybutadiene[J]. Polymer Testing, 2017, 57: 260-269.
8
NASKAR K, NOORDERMEER J W M. Influence of premade and in situ compatibilizers in polypropylene/ethylene-propylene-diene terpolymer thermoplastic elastomeric olefins and thermoplastic vulcanizates[J]. Journal of Applied Polymer Science, 2006, 100(5): 3877-3888.
9
ZHOU Q, YAN L, LAI X, et al. The effect of lanthanum trimethacrylate on the mechanical properties and flame retardancy of dynamically vulcanized PP/EPDM thermoplastic vulcanizates[J]. Journal of Elastomers & Plastics, 2018, 50(4): 339-353.
10
XU C H, LIN B F, LIANG X Q, et al. Zinc dimethacrylate induced in situ interfacial compatibilization turns EPDM/PP TPVs into a shape memory material[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4539-4548.
11
李培军,赵鑫,毕薇娜,等.原位增容剂和助交联剂对胶粉/聚丙烯热塑性弹性体性能的影响[J].特种橡胶制品,2017,38(2):10-13, 39.
12
PANIGRAHI H, SREENATH P R, BHOWMICK A K, et al. Unique compatibilized thermoplastic elastomer from polypropylene and epichlorohydrin rubber[J]. Polymer, 2019, DOI: 10.1016/j.polymer.2019.121866.
13
洪艳.增韧母料的制备及其对聚丙烯结构与性能的影响[D].武汉:湖北工业大学,2019.
14
程思怡.三元乙丙橡胶/聚丙烯热塑性弹性体的结构与性能[D].武汉:湖北工业大学,2015.
15
高炜斌,徐亮成.高分子材料分析与测试[M].北京:化学工业出版社,2020.
16
LI Y, LI Y, HAN C, et al. Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers[J]. Polymer Bulletin, 2019, DOI: 10.1007/s00289-018-2533-5.
17
程龄贺,李贵勋,管众,等.接枝架桥剂配比对PP/a-PA66原位成纤复合材料形态结构和力学性能的影响[J].高分子材料科学与工程,2012,28(6):89-92, 97.
18
石敏,朱建华,吉玉碧,等.DCP对动态硫化EPDM/PP性能的影响[J].塑料科技,2016,44(12):27-31.
19
牛慧,刘姝慧,何宗科,等.乙丙橡胶可逆交联研究进展[J].石油化工,2019,48(6):642-651.
20
NING N Y, LI X Y, TIAN H C, et al. Unique microstructure of an oil resistant nitrile butadiene rubber/polypropylene dynamically vulcanized thermoplastic elastomer[J]. RSC Advances, 2017, 7(9): 5451-5458.
21
XU C H, ZHENG Z J, WU W C, et al. Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ compatibilization of MAA and excess ZnO nanoparticles: preparation, structure and properties[J]. Composites Part B Engineering, 2019, 160: 147-157.
22
ESTAGY S, MOVAHED O S, YAZDANBAKHSH S, et al. A novel chemical technique for compatibility of ethylene-propylene-diene monomer rubber and styrene-butadiene rubber in their blends[J]. Journal of Elastomers & Plastics, 2017, 49 (4): 298-314.
23
GUNTUR N P R, YADAV S G, GOPALAN S. Effect of titanium carbide as a filler on the mechanical properties of styrene butadiene rubber[J]. Materials Today: Proceedings, 2020, 24: 1552-1560.
24
石敏,朱建华,吉玉碧,等.石蜡油对动态硫化EPDM/PP热塑性弹性体力学性能的影响[J].塑料科技,2018,46(10):57-60.
25
GIORGIA Z, GIUSEPPE L. Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges[J]. Progress in Polymer Science, 2021, DOI:10.1016/j.progpolymsci.2020.101342.

Comments

PDF(1003 KB)

Accesses

Citation

Detail

Sections
Recommended

/