Morphology and Toughening Mechanism of EPDM Toughened PP/HDPE Blends

FU Ming-yu, JIANG Feng-yang, YU Hui, JI Di, HUI Hai-feng, CHEN Ming-qing, GONG He-xing, WANG Jun-bo

PDF(2326 KB)
PDF(2326 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (05) : 23-27. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.005
Theory and Research

Morphology and Toughening Mechanism of EPDM Toughened PP/HDPE Blends

Author information +
History +

Abstract

In order to improve the toughening efficiency of polypropylene (PP) and study its toughening mechanism, PP/HDPE/EPDM blends were prepared by melt blending with PP/HDPE blends as matrix and ethylene propylene diene monomer (EPDM) as toughening modifier. The results show that the core-shell structure of EPDM and HDPE is dispersed in the matrix, and the interaction force between EPDM and matrix is enhanced. EPDM promotes the crystallization of PP, but inhibits the crystallization of HDPE, thereby refining the dispersed phase of the core-shell structure. With the increase of EPDM content (4%~12%), the impact strength of PP/HDPE/EPDM blends is enhanced, and EPDM can toughen PP while slowing down the rapid decline of PP tensile strength. When the EPDM content is up to 16%, the impact strength of the blend reaches 11.18 kJ/m2, which is 158% higher than the PP/HDPE blends. The toughening mechanism of PP/HDPE/EPDM blend is the cavitation effect of EPDM shell and HDPE core structure, which enhances its energy absorption.

Key words

Polypropylene / High density polyethylene / Ethylene propylene diene monomer / Impact strength / Toughening mechanism

Cite this article

Download Citations
FU Ming-yu , JIANG Feng-yang , YU Hui , et al . Morphology and Toughening Mechanism of EPDM Toughened PP/HDPE Blends. Plastics Science and Technology. 2024, 52(05): 23-27 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.005

References

1
MADDAH H A. Polypropylene as a promising plastic: A Review[J]. American Journal of Polymer Science, 2016, 6: 1-11.
2
KARIAN H G. Handbook of polypropylene and polypropylene composites, revised and expanded[M]. Boca Raton, USA: CRC Press, 2003.
3
PATTI A, ACIERNO D. Polypropylene-polymerization and characterization of mechanical and thermal properties[M].Vienna, Austria: Intech Open, 2020.
4
ZARE L, AREFAZAR A, JAZANI O M. Effects of processing conditions on the phase morphology and mechanical properties of highly toughened polypropylene /polybutylene terephthalate (PP/PBT) blends[J].Iranian Polymer Journal, 2021, 30: 1181-1200.
5
韩贤新,刘喜军,王宇威.EPR/PP共混物的制备及性能研究[J].齐齐哈尔大学学报:自然科学版,2021,37(3):53-57.
6
PRAVEEN K M, TALEB K, PILLIN I, et al. Comparative mechanical, morphological, rheological, and thermal properties of polypropylene/ethylene-propylene-diene rubber blends[J]. Polymers for Advanced Technologies, 2022, 33(10): 3296-3311.
7
WANG K R, CHEN L, GAO Y, et al. Effect of morphology development on the low-temperature tensile properties of PP/POE blends[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52192.
8
ZHANG H M, ZHONG J, ZHANG X Y, et al. Controlling the enrichment location of brush grafted multi-walled carbon nanotubes at the interface of various polymer blends[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2021.124427.
9
LI X G, WANG X, HUANG M R, et al. Review: Progress in core-shell rubber particles for efficiently toughening resins[J]. Journal of Harbin Institute of Technology (New Series), 2022, 29(6): 34-63.
10
WAL A, NIJHOF R, GAYMANS R J. Polypropylene-rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour[J]. Polymer, 1999, 40(22): 6031-6044.
11
LI F S, ZHANG N, GAO Y B, et al. In situ formation of core-shell rubber particles in polypropylene matrix by melt blending and its effects on the toughness and stiffness of the composites[J]. Polymer Engineering and Science, 2022, 62: 4090-4099.
12
BAO W, GAO Y B, LI F S, et al. How do the core mechanical properties affect the toughening of polypropylene with core-shell particles?[J]. Journal of Polymer Research, 2023, DOI: 10.1007/s10965-023-03668-9.
13
CHEN F, QIU B W, SHANGGUAN Y G, et al. Correlation between impact properties and phase structure in impact polypropylene copolymer[J]. Materials & Design, 2015, 69: 56-63.
14
QIU B W, CHEN F, SHANGGUAN Y G, et al. Simultaneously enhancing strength and toughness for impact polypropylene copolymers by regulating the dispersed phase with high density polyethylene[J]. RSC Advcxnces, 2014, 4(103): 58999-59008.
15
SONG S J, FENG J C, WU P Y, et al. Shear-enhanced crystallization in mpact-resistant polypropylene copolymer: Influence of compositional heterogeneity and phase structure[J]. Macromolecules, 2009, 42(18): 7067-7078.
16
JIA E W, ZHAO S J, SHANGGUAN Y G, et al. Toughening mechanism of polypropylene bends with polymer particles in core-shell structure: Equivalent rubber content effect related to core-shell interfacial strength[J]. Polymer, 2019, DOI: 10.1016/j.polymer.2019.121602.
17
MAZIDI M M, AGHIEH M K R, KHONAKDARCD H A, et al. Structure-property relationships in super-toughened polypropylene-based ternary blends of core-shell morphology[J]. RSC Advances, 2016, 6(2): 1508-1526.
18
CHEN F, SHANGGUAN Y G, JUNG Y S, et al. Toughening with little rigidity loss and mechanism for modified polypropylene by polymer particles with core-shell structure[J]. Polymer, 2015, 65: 81-92.
19
YANG H, ZHANG Q, GUO M, C, et al. Study on the phase and toughening mechanism in PP/EPDM/SiO2 composites[J]. Polymer, 2006, 47(6): 2106-2115.
20
YANG H, ZHANG X, QU C, et al. Largely improved toughness of PP/EPDM blends by adding nano-SiO2 particles[J]. Polymer, 2007, 48(3): 860-869.
21
SI Q B, ZHOU C, YANG H D, et al. Toughening of polyvinylchloride by core-shell rubber particles: Influence of the internal structure of core-shell particles[J]. European Polymer Journal, 2007, 43(7): 3060-3067.
22
ZHAO S J, HU R Y, ZHU L H, et al. Adjustable brittle-ductile transition behavior and rheological behavior of polypropylene random copolymer nanocomposites through well interfacial-loaded nanoparticles[J]. Composites, PartB. Engineering, 2022, DOI: 10.1016/j.compositesb.2022.109939.
23
YIN B, LI L P, ZHOU Y, et al. Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: The role of core-shell particles formed in melt processing on preventing micro-crack propagation[J]. Polymer, 2013, 54(7): 1938-1947.
24
LI F S, GAO Y B, ZHANG Y, et al. Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Toughening with core-shell rubber modifier[J]. Polymer, 2020, DOI: 10.1016/j.polymer.2020.122237.
25
李明钊,祝良海,陈锋,等.含原位聚合物核壳粒子聚丙烯共混物的流变学研究[J].高分子学报,2022,53(11):1399-1408.
26
鞠翼龙,刘宣伯,乔泽爽,等.基体分子量对PP/EPR共混物力学性能的影响[J].塑料科技,2022,50(2):10-13.
27
陈清江,董志聪,李红发,等. EPR@PP聚丙烯基直流绝缘材料的制备及其性能研究[J].塑料科技,2023,51(10):27-32.
28
王军,罗筑,杨乐,等.原位增容等规聚丙烯/高密度聚乙烯共混物的制备及性能研究[J].塑料科技,2021,49(6):1-6.
29
DOU R, WANG W, ZHOU Y, et al. Encapsulated phase structure and morphology evolution during quiescent annealing in ternary polymer blends with PA6 as matrix[J]. Journal of Applied Polymer Science, 2014, DOI: 10.1002/app.39937.
30
ZHOU Y, YIN B, LI L, et al. Characterization of PP/EPDM/HDPE ternary blends: the role of two EPDM with different viscosity and processing method[J]. Polymer-Plastics Technology and Engineering, 2012, 51(10): 983-990.
31
KIM J K, LEE S H, PAGLICAWAN M A, et al. Effects of extruder parameters and compositions on mechanical properties and morphology of maleic anhydride grafted polypropylene/waste tire blends[J]. Polymer-Plastics Technology and Engineering, 2007, 46(1): 19-29.
32
OTHMAN N, HASSAN A, RAHMAT A R, et al. Effect of compatibilizer type on properties of 70:30 polyamide 6/polypropylene/MMT nanocomposites[J]. International Journal of Polymeric Materials, 2007, 56(9): 893-909.
33
李姝姝,程鹏飞,刘小燕,等.HDPE增韧改性PP及增韧机理研究[J].塑料工业,2023,51(1):54-60.

Comments

PDF(2326 KB)

Accesses

Citation

Detail

Sections
Recommended

/