
Flame Retardancy Prediction Model for Polypropylene/Magnesium Hydroxide Composites Based on BP Neural Network
ZENG Shu-hang, WANG Ze-yan, LI Zhi-li, LIAO Jie, LI Jia-lin, HE Dong-sheng, TANG Yuan, FU Yan-hong
Flame Retardancy Prediction Model for Polypropylene/Magnesium Hydroxide Composites Based on BP Neural Network
In order to improve the flame retardancy of polypropylene/magnesium hydroxide (PP/MH) composites and to grasp the intensity of different influencing factors on the flame retardancy of the materials, the MH particle size, contact angle, and the amount of additive were used as the three inputs, and the limiting oxygen index (LOI) of PP/MH composites was taken as the output. A three-layer BP neural network prediction model was established, and the orthogonal test results were used as samples to train it to predict the flame retardancy of the composites. The prediction results were verified by experiments. The results show that the effects of various factors on the flame retardancy of the PP/MH composites from large to small are MH content, MH contact angle and MH particle size. The optimal process parameters: the MH particle size is 0.2 µm, the MH contact angle is 135°, the MH content is 40%. Under these conditions, the LOI of PP/MH composite is as high as 31.5%. The BP neural network model can accurately predict the flame retardancy of composites, and the relative error between the predicted value and the experimental value is generally less than 5%. The prediction model of flame retardancy can be used to optimize the performance of materials, reduce the experimental workload, and improve the work efficiency.
BP neural network / Polypropylene / Magnesium hydroxide / Sodium stearate / Flame retardancy
1 |
张立飞,王春锋,韩志东.聚碳硅烷改性氢氧化镁对PP复合材料阻燃性能的影响[J].功能材料,2020,51(7):7069-7073, 7082.
|
2 |
|
3 |
李立清,周润,龙慧婷,等.基于密度泛函理论的氢氧化镁(101)表面改性机理研究[J].有色金属科学与工程,2023,14(4):447-453.
|
4 |
|
5 |
刘立华,张建伟,贾静娴,等.环保型无机阻燃剂的表面改性及在PP中的应用研究[J].南开大学学报:自然科学版,2020,53(1):1-6.
|
6 |
鲍庆煌,李俊,袁英杰,等.PUF、PP和PS阻燃复合塑料研究现状和发展趋势[J].材料导报,2023,37(增刊1):529-535.
|
7 |
|
8 |
|
9 |
曾书航,裴丰,郭忠,等.氢氧化镁阻燃剂的制备及其在塑料领域中的应用研究进展[J].塑料科技,2023,51(6):107-111.
|
10 |
|
11 |
曾书航,李智力,陈红兵,等.氢氧化镁阻燃剂的制备工艺研究进展与发展趋势[J].精细石油化工,2024,41(1):60-64.
|
12 |
刘懿德,陈嘉炼,李红周,等.协效阻燃聚丙烯的阻燃性能[J].应用化学,2019,36(10):1165-1171.
|
13 |
刘英,崔香梅,兰生杰,等. 氢氧化镁的复合改性研究[J].人工晶体学报,2019,48(9):1734-1741.
|
14 |
|
15 |
|
16 |
张礼,曾广胜,孙刚,等.基于BP神经网络的淀粉/EVA复合发泡材料流变性能预测模型及应用[J].包装学报,2015,7(3):14-19.
|
17 |
|
18 |
陈兰兰,杨雨云,肖海平,等.基于GA-BP神经网络的露天矿边坡变形预测分析[J].有色金属科学与工程,2022,13(6):106-112.
|
19 |
曾广胜,孙刚.基于BP神经网络的生物质发泡材料性能预测模型及应用[J].复合材料学报,2014,31(1):107-111.
|
20 |
康乐,王立志,高晓平.基于BP神经网络的聚偏氟乙烯/聚丙烯梯度复合滤料工艺优化[J].复合材料学报,2022,39(8):3776-3785.
|
21 |
陈楠,耿立艳,支景鹏.基于BP神经网络预测模型的CLDH/PP复合材料制备[J].塑料工业,2018,46(12):46-50.
|
22 |
张兴华,陈旭龙,童速玲.用人工神经网络预测聚乙烯及其共混物机械性能[J].塑料,2002,31(2):16-20.
|
23 |
陈坤,郑梯和,宋克东,等.BP神经网络在POE-g-MAH/HDPE增韧PA6研究中的应用[J].塑料工业,2011,39(8):45-47, 80.
|
24 |
何晓凤,周红标.基于GA-BP的混凝土抗压强度预测研究[J].淮阴工学院学报,2011,20(3):21-25.
|
25 |
皮卫,熊建武.基于计算机辅助工程的BMS控制盒注塑工艺优化[J].塑料科技,2023,51(7):95-98.
|
26 |
姜泽钰,李鹤廷,吴双,等.无规共聚聚丙烯注塑专用树脂的结构与性能[J].塑料科技,2023,51(9):27-30.
|
27 |
李方方.基于模流分析与BP神经网络预测算法的蜗轮参数优化分析[J].塑料科技,2021,49(11):71-75.
|
28 |
武龙飞,张晓龙,胡建杭,等.基于IPSO-BP神经网络的富氧底吹铜熔炼炉喷枪寿命预测模型[J].有色金属(冶炼部分),2023(12):18-23.
|
29 |
陈飞,随婕斐,李智力,等.基于BP神经网络的双叶轮浮选机选矿效率预测研究[J].现代矿业,2023,39(1):207-210.
|
30 |
|
/
〈 |
|
〉 |