Progress in Interface Reinforcement of Polypropylene Composites

WANG Xin, JIANG Min, CHEN Si-yue, CAO Meng-yuan, SUN Guang-ze, SHI Hao

PDF(843 KB)
PDF(843 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (04) : 127-131. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.025
Review

Progress in Interface Reinforcement of Polypropylene Composites

Author information +
History +

Abstract

Polypropylene is a kind of excellent thermoplastic general purpose resin, which has transparent, light weight, heat resistance, electrical insulation, and good processing properties, and is widely used in fiber products, auto parts, pipeline, packaging materials, and other fields. Compared with epoxy resin and other polar materials, the interfacial compatibility of polypropylene composites is poor, so the study of interfacial strengthening of polypropylene composites is particularly important. This paper analyzes the research on interface strengthening of polypropylene composites in ten years, and summarizes five interface bonding mechanisms, including chemical bonding theory, mechanical interlock theory, interface diffusion theory, interface infiltration theory, and interface crystallization theory. The interfacial enhancement methods such as sizing agent/coating treatment, 'multi-scale' modification of filler surface by nano-materials, molecular self-assembly, and polypropylene matrix modification that induces interfacial crystallization are reviewed. Finally, the future opportunities and challenges of interfacial research on polypropylene composites are prospected.

Key words

Polypropylene / Filler enhancement / Interfacial enhancement mechanism / Multi-scale effect

Cite this article

Download Citations
WANG Xin , JIANG Min , CHEN Si-yue , et al . Progress in Interface Reinforcement of Polypropylene Composites. Plastics Science and Technology. 2024, 52(04): 127-131 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.025

References

1
祁蓉,铁文安,康少冉,等.车用聚丙烯材料改性技术的研究进展[J].现代塑料加工应用,2020,32(6):60-63.
2
刘洋,朱明野,乔渊.聚乙烯/滑石粉/聚丙烯纤维复合材料的制备及其在建筑层压板中的应用[J].塑料科技,2022,50(3):13-16.
3
陈荣源,赵凌锋,刘欣 等.玻璃纤维增强增韧回收聚丙烯复合材料的制备与性能研究[J].塑料科技,2022,50(9):20-24.
4
李宏岩,周琳霞.聚丙烯/竹纤维复合材料的制备及力学和抗老化性能研究[J].塑料科技,2021,49(7):43-46.
5
高翔.空心玻璃微珠对膨胀阻燃聚丙烯材料的阻燃协效研究[J].塑料科技,2021,49(9):43-46.
6
NING H, LU N, HASSEN A A, et al. A review of Long fibre thermoplastic (LFT) composites[J]. International Materials Reviews, 2020, 65(3): 164-188.
7
吴珊,陈晓露,龙绍檑.不同长度玻璃纤维对PP微孔发泡材料流变行为与拉伸性能的影响[J].塑料科技,2023,51(8):43-47.
8
DELLI E, GILIOPOULOS D, BIKIARIS D N, et al. Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites[J]. Composite Structures, 2021, DOI: 10.1016/j.compstruct.2021.113678.
9
黄云刚,黄维龙,洪浩群,等.界面改性对聚丙烯-玻璃纤维复合材料力学性能影响[J].复合材料学报,2022,39(7):3156-3166.
10
LUO G, LI W, LIANG W, et al. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites[J]. Composites Part B: Engineering, 2017, 111: 190-199.
11
LIU W, ZHU Y, QIAN C, et al. Interfacial modification between glass fiber and polypropylene using a novel waterborne amphiphilic sizing agent[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2022.110029.
12
HAN S H, OH H J, KIM S S. Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites[J]. Composites Part B: Engineering, 2014, 60: 98-105.
13
KARGER-KOCSIS J, MAHMOOD H, PEGORETTI A. Recent advances in fiber/matrix interphase engineering for polymer composites[J]. Progress in Materials Science, 2015, 73: 1-43.
14
ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2022.109639.
15
SEO H Y, CHO K Y, IM D, et al. High mechanical properties of covalently functionalized carbon fiber and polypropylene composites by enhanced interfacial adhesion derived from rationally designed polymer compatibilizers[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2021.109439.
16
ZENG S, ZHANG T, NIE M, et al. Effect of root-like mechanical-interlocking interface in polypropylene/aramid fiber composites from experimental to numerical study[J]. Composites Part B: Engineering, 2021, DOI: 10.1016/J.COMPOSITESB.2021.108868.
17
JIN X, HEEPE L, STRUEBEN J, et al. Challenges and solutions for joining polymer materials[J]. Macromolecular rapid communications, 2014, 35(18): 1551-1570.
18
KIM J H, KWON D J, LIM C S, et al. Interfacial adhesion evaluation via wettability for fiber reinforced polymer composites: A review[J]. Composite Interfaces, 2023, 30(3): 283-299.
19
DILSIZ N, WIGHTMAN J P. Effect of acid-base properties of unsized and sized carbon fibers on fiber/epoxy matrix adhesion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 164(2/3): 325-336.
20
卫红斌.聚丙烯复合材料界面结晶结构及成因分析[J].上海塑料,2016(1):26-31.
21
NING N, FU S, ZHANG W, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization[J]. Progress in Polymer Science, 2012, 37(10): 1425-1455.
22
ZHOU M, XU S, LI Y, et al. Transcrystalline formation and properties of polypropylene on the surface of ramie fiber as induced by shear or dopamine modification[J]. Polymer, 2014, 55(13): 3045-3053.
23
TIAN Y, ZHANG H, ZHANG Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 1-8.
24
STOJCEVSKI F, HILDITCH T B, GENGENBACH T R, et al. Effect of carbon fiber oxidization parameters and sizing deposition levels on the fiber-matrix interfacial shear strength[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 212-224.
25
GRAUPNER N, RÖßLER J, ZIEGMANN G, et al. Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: A critical review of pull-out test, microbond test and single fibre fragmentation test results[J]. Composites Part A: Applied Science and Manufacturing, 2014, 63: 133-148.
26
谢顺利,雷红红,张春丽,等.表面改性对碳纤维及其复合材料性能影响的研究进展[J].表面技术,2022,51(11):1001-3660.
27
ZHU Y, LIU W, DAI H, et al. Synthesis of a self-assembly amphiphilic sizing agent by RAFT polymerization for improving the interfacial compatibility of short glass fiber-reinforced polypropylene composites[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2021.109181.
28
THAKUR V K, VENNERBERG D, KESSLER M R. Green aqueous surface modification of polypropylene for novel polymer nanocomposites[J]. ACS applied materials & interfaces, 2014, 6(12): 9349-9356.
29
LIU Y, FANG Y, QIAN J, et al. Bio-inspired polydopamine functionalization of carbon fiber for improving the interfacial adhesion of polypropylene composites[J]. RSC Advances, 2015, 5: 107652-107661.
30
LEE J U, PARK B, KIM B S, et al. Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 482-489.
31
聂会捷,林海滨,杨晓慧,等.氧化石墨烯改性苎麻/聚丙烯复合材料的制备及性能研究[J].纺织报告,2017,11:48-49.
32
FANG J, ZHANG L, LI C. The combined effect of impregnated rollers configuration and glass fibers surface modification on the properties of continuous glass fibers reinforced polypropylene prepreg composites[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108259.
33
YE X, WANG H, ZHENG K, et al. The interface designing and reinforced features of wood fiber/polypropylene composites: Wood fiber adopting nano-zinc-oxide-coating via ion assembly[J]. Composites Science and Technology, 2016, 124: 1-9.
34
毕岚森,高凡川,张传琪,等.碳纳米管/碳纤维跨尺度界面增强体系构建的研究进展[J].科学通报,2023,68(5):495-509.
35
楚电明,董乾鹏,白文娟,等.碳纤维/碳纳米管界面增强技术研究进展[J].化工新型材料,2023,51(1):1-7.
36
WANG J, ANTHONY D B, FUENTES C A, et al. Wettability of carbon nanotube-grafted carbon fibers and their interfacial properties in polypropylene thermoplastic composite[J]. Composites Part A: Applied Science and Manufacturing, 2022, DOI: 10.1016/j.compositesa.2022.106993.
37
HAN W, ZHOU J, SHI Q. Research progress on enhancement mechanism and mechanical properties of FRP composites reinforced with graphene and carbon nanotubes[J]. Alexandria Engineering Journal, 2023, 64: 541-579.
38
靳宇,信春玲,何亚东,等.纳米二氧化硅修饰玻纤表面对玻纤增强聚丙烯复合材料性能的影响[J].北京化工大学学报:自然科学版,2020,47(2):36-43.
39
ZHENG N, HUANG Y, SUN W, et al. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates[J]. Carbon, 2016, 110: 69-78.
40
TIAN H, YAO Y, LIU D, et al. Enhanced interfacial adhesion and properties of polypropylene/carbon fiber composites by fiber surface oxidation in presence of a compatibilizer[J]. Polymer Composites, 2019, 40(Suppl 1): E654-E662.
41
张中伟,何书珩.长玻纤增强PP材料界面行为对其力学性能的影响[J].工程塑料应用,2022,50(8):114-118.
42
谢海生,兰修才,李谦,等.低挥发高接枝率马来酸酐接枝聚丙烯的制备及其在增强聚丙烯材料中的应用[J].塑料工业,2022,50(10):149-153.
43
SHI S, YANG C, NIE M. Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10413-10420.
44
汪俊,李枭,吴喜元,等.界面自组装在聚丙烯基体内构筑绒球状玻璃微珠[J].塑料工业,2019,47(11):153-155.
45
ZHANG Y, SUN T, JIANG W, et al. Crystalline modification of a rare earth nucleating agent for isotactic polypropylene based on its self-assembly[J]. Royal Society Open Science, 2018, DOI: 10.1098/rsos.180247.
46
HE X, XU W, LIU Y, et al. In situ construction of pompon-like hydroxyapatite hybrid via interfacial self-assembly in polypropylene matrix[J]. Composites Science and Technology, 2017, 142: 246-252.
47
王波,黄超,罗峻,等.改性聚丙烯结晶行为研究进展[J].塑料科技,2014,42(12):126-132.
48
YANG S, YU H, LEI F, et al. Formation mechanism and morphology of β-transcrystallinity of polypropylene induced by two-dimensional layered interface[J]. Macromolecules, 2015, 48(12): 3965-3973.
49
HE L, LUO S, SHEN J, et al. Fabrication of multilayered β-form transcrystallinity in isotactic polypropylene for achieving optimized mechanical performances[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21791-21801.
50
FANG J, ZHANG L, LI C. Largely enhanced transcrystalline formation and properties of polypropylene on the surface of glass fiber as induced by PEI-CNT and PEI-GO modification[J]. Polymer, 2020, DOI: 10.1016/j.polymer.2019.122025.

Comments

PDF(843 KB)

Accesses

Citation

Detail

Sections
Recommended

/