Preparation and Morphology Control of Polyolefin Elastomer (POE) Nanofibers by Island-in-the-Sea Spinning Method

ZHONG Wei-bing, LIU Wei-wei, KE Yi-ming, SONG Yin-nan, MING Xiao-juan, DING Xin-cheng, WANG Dong

PDF(2773 KB)
PDF(2773 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (04) : 8-13. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.002
Theory and Research

Preparation and Morphology Control of Polyolefin Elastomer (POE) Nanofibers by Island-in-the-Sea Spinning Method

Author information +
History +

Abstract

In this paper, polyolefin elastomer (POE) nanofibers were prepared by island melt spinning. The processing temperature range was determined by thermogravimetric analysis to avoid thermal degradation of the material. The morphology of POE nanofibers was optimized by changing the type of cellulose acetate butyrate (CAB), the ratio of POE/CAB, the processing temperature, and the shear rate. The morphological differences of nanofibers under different process parameters were analyzed, including the average diameter and diameter distribution. The results show that considering the thermal stability of CAB, the temperature of the whole processing process should be lower than 250 ℃, and POE nanofibers with a diameter of about 400 nm can be obtained by using CAB-20 with a melt flow rate close to that of POE. At a processing temperature of 235 ℃, the fiber morphology is optimal, with the smallest diameter and the narrowest distribution. At the processing temperature of 250 ℃, the morphology of POE nanofibers shows a cross-networked structure. The closer the twin-screw shear rate is to 400 s-1, the better the morphology, the smaller the diameter and the more concentrated the distribution of the prepared POE nanofibers. The lower the component ratio of POE to CAB, the better the fiber morphology, but when the ratio is as low as 5∶95, the fiber diameter becomes thicker and the distribution wider.

Key words

Island spinning / Nanofibers / Thermoplastic elastomer / Melt extrusion

Cite this article

Download Citations
ZHONG Wei-bing , LIU Wei-wei , KE Yi-ming , et al . Preparation and Morphology Control of Polyolefin Elastomer (POE) Nanofibers by Island-in-the-Sea Spinning Method. Plastics Science and Technology. 2024, 52(04): 8-13 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.002

References

1
NIU D, JIANG W, YE G, et al. Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection[J]. Materials Research Bulletin, 2018, 102: 92-99.
2
CHOI J, DUN C, FORSYTHE C, et al. Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer[J]. Journal of Materials Chemistry A, 2021, 9(28): 15696-15703.
3
DU Y T, ZHANG X Y, LIU P, et al. Electrospun nanofiber-based glucose sensors for glucose detection[J]. Frontiers in Chemistry, 2022, DOI: 10.3389/fchem.2022.944428.
4
MAHAND S N, YAZDANBAKHSH A, TAYOURI M I, et al. Theoretical and experimental investigation of selective gas permeability in polystyrene/polyolefin elastomer/nanoclay nanocomposite films[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2023.107960.
5
CARRIERE C J, SILVIS H C. The effects of short‐chain branching and comonomer type on the interfacial tension of polypropylene‐polyolefin elastomer blends[J]. Journal of Applied Polymer Science, 2015, 66(6): 1175-1181.
6
LI M, CHANG K, ZHONG W, et al. A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane[J]. Applied Surface Science, 2019, 486: 249-256.
7
ZHAO Y S, MA Y Q, XIONG Y H, et al. Chemically crosslinked crystalline thermoplastic polyolefin elastomer with good elasticity and improved thermo-mechanical properties[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2022.125075.
8
HUANG H J, XIE B H, YANG W, et al. Essential work of fracture parameters of injection-molded polypropylene/polyolefin elastomer blends[J]. Journal of Macromolecular Science Part B, 2010, 49(2): 231-241.
9
尹佳杰,罗忠林,罗发亮,等.POE用量对POE/BR共混物性能的影响[J].橡胶工业,2022,69(8):603-607.
10
杜青,何祎,余坦竟,等.取向PAN/MWCNTs与热塑性聚烯烃复合材料的制备及表征[J].中国塑料,2022,36(8):49-55.
11
SILVA A L N D, TAVARES M I B, POLITANO D P, et al. Polymer blends based on polyolefin elastomer and polypropylene[J]. Journal of Applied Polymer Science, 2015, 66(10): 2005-2014.
12
YAO Z, HE J, HU J, et al. Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(2): 673-681.
13
SUN X, WANG Z Y, WANG Y, et al. Graphene/polyolefin elastomer films as thermal interface materials with high thermal conductivity, flexibility, and good adhesion[J]. Chemistry of Materials, 2023, 35(6): 2486-2494.
14
ZENG F J, ZHAO X, LUO M Y, et al. A transparent PEDOT: PSS/PVA-co-PE/epoxy thermoelectric composite device with excellent flexibility and environmental stability[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2021.109153.
15
YOU H N, ZHAO Q H, MEI T, et al. Facile fabrication of thermoplastic polymer nanoparticles by combining sea‐island spinning and Rayleigh instability[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52728.
16
DONG W, KAI W, XU W. Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends[J]. Polymers for Advanced Technologies, 2013, 24(1): 70-74.
17
GURAV A B, GUO Q, TAO Y, et al. Durable, robust and free-standing superhydrophobic poly(vinyl alcohol-co-ethylene) nanofiber membrane[J]. Materials Letters, 2016, 182: 106-109.
18
万雨彩,刘迎,王旭,等.聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J].纺织学报,2020,41(4):15-20.
19
LIU Q, CHEN J, MEI T, et al. A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications[J]. Journal of Materials Chemistry A, 2018, 6(8): 3692-3704.
20
HE J, BU W, ZHANG H. Factors influencing microstructure formation in polyblends containing liquid crystalline polymers[J]. Polymer Engineering & Science, 1995, 35(21): 1695-1704.
21
WANG D, SUN G, CHIOU B S. A high‐throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers[J]. Macromolecular Materials & Engineering, 2010, 292(4): 407-414.
22
WANG D, SUN G. Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends[J]. European Polymer Journal, 2007, 43(8): 3587-3596.
23
WANG D, SUN G, CHIOU B S. Fabrication of tunable submicro‐or nano‐structured polyethylene materials from immiscible blends with cellulose acetate butyrate[J]. Macromolecular Materials and Engineering, 2010, 293(8): 657-665.
24
ASIM M, PARIDAH M T, CHANDRASEKAR M, et al. Thermal stability of natural fibers and their polymer composites[J]. Iranian Polymer Journal, 2020, 29: 625-648.
25
NURAZZI N M, ASYRAF M R M, RAYUNG M, et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments[J]. Polymers, 2021, DOI: 10.3390/polym13162710.
26
国家质量监督检验检疫总局,国家标准化管理委员会. 塑料 热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测定 第1部分:标准方法:GB/T 3682.1—2018[S].北京:中国标准出版社,2006.
27
TROTTA G, STAMPONE B, FASSI I, et al. Study of rheological behaviour of polymer melt in micro injection moulding with a miniaturized parallel plate rheometer[J]. Polymer Testing, 2021, DOI: 10.1016/j.polymertesting.2021.107068.
28
YILDIZ Z, ÖNEN H A, DEHMEN O G, et al. Usage of cellulose acetate butyrate based oligomeric structures on cotton fabric coatings[J]. Journal of the Turkish Chemical Society Section A: Chemistry, 2021, 8(1): 303-310.

Comments

PDF(2773 KB)

Accesses

Citation

Detail

Sections
Recommended

/