Research Progress in Carbon Materials Reinforced Polypropylene Composites

ZHAN Xiu-gan, CHEN Bi-cheng, GONG Yu-mei, GUO Chen, TUO Xiao-hang

PDF(1136 KB)
PDF(1136 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (03) : 116-120. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.023
Review

Research Progress in Carbon Materials Reinforced Polypropylene Composites

Author information +
History +

Abstract

As a multifunctional filler, carbon materials play an important role in enhancing the comprehensive properties of polypropylene composites. However, it is an important task to balance the relationship between the amount of different carbon materials and the formability and functionality of composite products. In this paper, the properties of carbon fiber, carbon nanotube and graphene, and the effects of these carbon materials on the mechanical, thermal and electrical properties of polypropylene-based multi-scale composites are discussed respectively. It is pointed out that it is a challenging research direction to prepare polypropylene composites filled with high content and hybrid carbon materials by melt deposition 3D printing process in the future.

Key words

Polypropylene / Carbon fiber / Carbon nanotube / Graphene / Mechanical properties

Cite this article

Download Citations
ZHAN Xiu-gan , CHEN Bi-cheng , GONG Yu-mei , et al . Research Progress in Carbon Materials Reinforced Polypropylene Composites. Plastics Science and Technology. 2024, 52(03): 116-120 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.023

References

1
石佩玉,詹莹韬,孙潇潇,等.高流动性聚丙烯的流变性能及热性能研究[J].合成纤维工业,2022,45(4):13-17.
2
王建强,牛伟伟,王永刚,等.中熔体流动速率高抗冲聚丙烯产品的开发[J].合成材料老化与应用,2023,52(1):55-8.
3
丁云江,戴春发,王仕杰.聚丙烯增韧机理研究[J].石油和化工设备,2023,26(2):12-15.
4
林祥凤,张跃飞.石墨烯在聚丙烯中的应用[J].塑料,2019,48(1):118-121, 125.
5
TANG T, WANG S, JIANG Y, et al. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding[J]. Journal of Materials Science and Technology, 2022, 111: 66-75.
6
周逸,刘薇,冯晓娟,等.石墨烯/聚丙烯复合材料导热性能测量分析研究[J].中国测试,2022,48(2):66-74.
7
林晓桂,徐睿杰,田子钦,等.炭黑碳纳米管导热聚丙烯复合材料性能研究[J].广东化工,2018,45(10):61-62, 74.
8
李代文,周杰,刘金花,等.高流动性聚丙烯的制备及性能[J].浙江理工大学学报:自然科学版,2019,41(2):160-167.
9
李丹,赵彪,陈轲,等.中空聚丙烯纤维制备及应用研究进展[J].中国塑料,2023,37(9):109-114.
10
王吉辉,郑威,郭雁,等.低缠结超高分子量聚乙烯微观结构与拉伸性能[J].高分子材料科学与工程,2019,35(1):48-52.
11
潘锋,李茂东,黄国家.石墨烯改性聚烯烃复合材料的研究进展[J].塑料工业,2019,47(8):7-11.
12
樊星.碳纤维复合材料的应用现状与发展趋势[J].化学工业,2019,37(4):12-16, 25.
13
张新元,何碧霞,李建利,等.高性能碳纤维的性能及其应用[J].棉纺织技术,2011,39(4):65-68.
14
JUNAEDI H, ALBAHKALI E, BAIG M, et al. Ductile to brittle transition of short carbon fiber-reinforced polypropylene composites[J]. Advances in Polymer Technology, 2020, DOI: 10.1155/2020/6714097.
15
冯冰涛,王晓珂,张信,等.连续碳纤维增强热塑性复合材料制备与应用研究进展[J].中国塑料,2022,36(7):165-173.
16
王子健,周晓东.连续纤维增强热塑性复合材料成型工艺研究进展[J].复合材料科学与工程,2021(10):120-128.
17
ALARIFI I M. A performance evaluation study of 3d printed nylon/glass fiber and nylon/carbon fiber composite materials[J]. Journal of Materials Research and Technology, 2022, 21: 884-892.
18
ACANFORA V, SELLITTO A, RUSSO A, et al. Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications[J]. Aerospace Science and Technology, 2023, DOI: 10.1016/j.ast.2023.108276.
19
袁海兵.短切碳纤维增强聚丙烯复合材料的性能[J].合成树脂及塑料,2018,35(2):24-28.
20
粟多文,杨荣强,杨广林,等.连续碳纤维增强聚丙烯性能研究[J].上海塑料,2020(3):34-39.
21
NEWCOMB B A. Processing, structure, and properties of carbon fibers[J]. Composites, Part A, 2016, 91: 262-282.
22
HENDLMEIER A, SIMON Ž, CHUTANI A, et al. Generating short carbon fiber polyamide-6 composites from continuous carbon fiber-A preliminary examination of surface treatment and sizing effects[J]. Composites, Part A, 2020, DOI: 10.1016/j.compositesa.2020.106058.
23
孟笑毅,崔野,孙洪涛,等.聚丙烯/短切碳纤维复合材料的界面相容性与力学性能的研究[J].塑料科技,2021,49(10):25-29.
24
王保正.聚丙烯用阻燃剂及阻燃聚丙烯[J].塑料,2004(1):54-59.
25
罗翔祥,李峰,乔成芳.改性碳纤维含量对聚丙烯的阻燃性能影响研究[J].塑料科技,2023,51(3):33-37.
26
MALLAKPOUR S, KHADEM E. Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications[J]. Chemical Engineering Journal, 2016, 302: 344-367.
27
UYOR U O, POPOOLA P A, POPOOLA O M, et al. A review of recent advances on the properties of polypropylene-carbon nanotubes composites[J]. Journal of Thermoplastic Composite Materials, 2022, 36(9): 3737-3770.
28
张树辰,张娜,张锦.碳纳米管可控制备的过去、现在和未来[J].物理化学学报,2020,36(1):54-69.
29
NGUYEN V T, MIN B K, YI Y, et al. MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2020.124608.
30
GHOSH S, GANGULY S, MARUTHI A, et al. Micro-computed tomography enhanced cross-linked carboxylated acrylonitrile butadiene rubber with the decoration of new generation conductive carbon black for high strain tolerant electromagnetic wave absorber[J]. Materials Today Communications, 2020, DOI: 10.1016/j.mtcomm.2020.100989.
31
SONG P, QIU H, WANG L, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance[J]. Sustainable Materials and Technologies, 2020, DOI: 10.1016/j.susmat.2020.e00153.
32
GAO J, LUO J, WANG L, et al. Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 364: 493-502.
33
LIU H, LI Q, ZHANG S, et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review[J]. Journal of Materials Chemistry C, 2018, 6(45): 12121-12141.
34
石素宇,韩任旺,罗飞,等.熔喷聚丙烯导电非织造布的制备及性能研究[J].化工新型材料,2020,48(4):168-171.
35
杨衡彬,韩宏昌,王海峰,等.聚丙烯/炭黑/废纸纤维导电复合材料的性能研究[J].塑料科技,2023,51(3):42-46.
36
黄响.改性炭黑填充聚丙烯复合材料导电性能研究[J].浙江化工,2019,50(4):14-16, 19.
37
ZHOU S, HRYMAK A N, KAMAL M R. Electrical, thermal, and mechanical properties of polypropylene/multiwalled carbon nanotube micromoldings[J]. Polymer Composites, 2019, 41(4): 1507-1520.
38
虞东霖,邹华,宁南英.硅橡胶基高导电复合材料的制备及其性能研究[J].橡胶工业,2023,70(7):483-489.
39
王建,张谦,邵明旺.聚丙烯混杂碳质填料复合材料的导电性能[J].塑料工业,2022,50(2):47-51.
40
ATEEQ M, SHAFIQUE M, AZAM A, et al. A review of 3D printing of the recycled carbon fiber reinforced polymer composites: Processing, potential, and perspectives[J]. Journal of Materials Research and Technology, 2023, 26: 2291-2309.
41
QIN B, LIU S, XU J F. Reversible amidation chemistry enables closed-loop chemical recycling of carbon fiber reinforced polymer composites to monomers and fibers[J]. Angewandte Chemie International Edition, 2023, DOI: 10.1002/anie.202311856.
42
李萌崛,陈德平,王平,等.微注射成型PP/MWCNTs复合材料的性能[J].工程塑料应用,2022,50(9):14-19.
43
邱健,姜治伟,邢海平,等.具有隔离结构的聚丙烯/碳纳米管复合材料的制备及电磁屏蔽性能[J].应用化学,2020,37(8):904-911.
44
WEN F, LI S, CHEN R, et al. Improved thermal and electromagnetic shielding of PEEK composites by hydroxylating PEK-C grafted MWCNTs[J]. Polymers, 2022, DOI: 10.3390/polym14071328.
45
CAO M, HAN C, WANG X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C, 2018, 6(17): 4586-4602.
46
MONNEREAU L, URBANCZYK L, MTHOMASSIN J, et al. Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances[J]. Polymer, 2015, 59: 117-123.
47
MTHOMASSIN J, PAGNOULLE C, BEDNARZ L, et al. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction[J]. Journal of Materials Chemistry, 2008, 18(7): 792-796.
48
LI Y, SHEN B, PEI X, et al. Ultrathin carbon foams for effective electromagnetic interference shielding[J]. Carbon, 2016, 100: 375-385.
49
WU M, REN Q, GAO P, et al. Enhanced electrical conductivity and EMI shielding performance through cell size-induced CNS alignment in PP/CNS foam[J]. Composites Communications, 2023, DOI: 10.1016/j.coco.2023.101716.
50
PUMERA M, SOFER Z. Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others[J]. Chemical Society Reviews, 2017, 46(15): 4450-4463.
51
JUAN L. Simultaneous improvement in the tensile and impact strength of polypropylene reinforced by graphene[J]. Journal of Nanomaterials, 2020, DOI: 10.1155/2020/7840802.
52
王雅珍,庆迎博,孟爽,等.石墨烯制备及应用研究进展[J].化学世界,2019,60(7):385-394.
53
TU Z, WANG J, YU C, et al. A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process[J]. Composites Science and Technology, 2016, 134: 49-56.
54
DU H, SPRATFORD S, SHAN J W, et al. Experimental and theoretical study of the evolution of fluid-suspended graphene morphology driven by an applied electric field and the attainment of ultra-low percolation threshold in graphene-polymer nanocomposites[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108315.
55
GKOURMPIS T, GASKA K, TRANCHIDA D, et al. Melt-mixed 3D hierarchical graphene/polypropylene nanocomposites with low electrical percolation threshold[J]. Nanomaterials, 2019, DOI: 10.3390/nano9121766.
56
CASTILLO R M D, CASTILLO L F D, CALLES A G, et al. Experimental and computational conductivity study of multilayer graphene in polypropylene nanocomposites[J]. Journal of Materials Chemistry C, 2018, 6(27): 7232-7241.
57
HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress In Polymer Science, 2011, 36(7): 914-944.
58
刘梦琪,徐钰东,陈海龙.石墨烯和碳纳米管的天然橡胶纳米复合材料的性能研究[J].橡胶工业,2023,70(4):266-271.
59
CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85.
60
夏雪,梅启林,王聪,等.石墨烯纳米片对碳纤维/聚丙烯复合材料导热及力学性能的影响[J].玻璃钢/复合材料,2019(1):11-14.
61
徐欢,柯律,张生辉,等.GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J].化工学报,2022,73(11):5150-5157, 5275.
62
VERMA S, DHANGAR M, MILI M, et al. Review on engineering designing of electromagnetic interference shielding materials using additive manufacturing[J]. Polymer Composites, 2022, 43(7): 4081-4099.
63
ALAM F E, DAI W, YANG M, et al. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity[J]. Journal of Materials Chemistry A, 2017, 5(13): 6164-6169.
64
SONG N, CAO D, LUO X, et al. Highly thermally conductive polypropylene/graphene composites for thermal management[J]. Composites Part A: Applied Science and Manufacturing, 2020, DOI: 10.1016/j.compositesa.2020.105912.

Comments

PDF(1136 KB)

Accesses

Citation

Detail

Sections
Recommended

/