Research Progress of PBAT Enhancement Modification

HE Xiao-feng, NIE Guang-zhi, GUO Fu-qiang, XIE Ya-qi, GE Tie-jun, LIU Pei-han

PDF(662 KB)
PDF(662 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (03) : 111-115. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.022
Review

Research Progress of PBAT Enhancement Modification

Author information +
History +

Abstract

PBAT is a popular biodegradable plastic, which has good ductility and flexibility, but the strength of PBAT is not high, which leads to the limitation of its application. In order to improve the strength of PBAT, it is necessary to modify it. In this paper, the research progress of PBAT modification was reviewed from the aspects of blending and polymerization. The melt blending modification of PBAT with biodegradable polymers, inorganic particles, and natural polymers, and the polymerization modification of PBAT were summarized. In the future, the compatibility between the modified filler and the matrix should be further improved in the blending modification. The polymerization modification should be designed through the polymer chain structure to control the proportion and distribution of rigid and flexible groups and the topology of the polymer chain, so as to improve the strength of PBAT. The research provides ideas for preparing high strength PBAT composites.

Key words

PBAT / Melt blending modification / Polymerization modification / Mechanical property

Cite this article

Download Citations
HE Xiao-feng , NIE Guang-zhi , GUO Fu-qiang , et al . Research Progress of PBAT Enhancement Modification. Plastics Science and Technology. 2024, 52(03): 111-115 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.022

References

1
刘海云.聚(己二酸丁二醇酯一对苯二甲酸丁二醇酯)的改性研究[D].扬州:扬州大学,2014.
2
GIGANTE V, CANESI I, CINELLI P, et al. Rubber toughening of polylactic acid (PLA) with Poly(butylene adipate-co-terephthalate)(PBAT): Mechanical properties, fracture mechanics and analysis of ductile-to-brittle behavior while varying temperature and test speed[J]. European Polymer Journal, 2019, 115: 125-137.
3
FOURATI Y, TARRÉS Q, MUTJÉ P, et al. PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties[J].Carbohydrate Polymers, 2018, 199: 51-57.
4
王泽澎.PBAT基生物降解材料薄膜的制备和性能研究[D].长春:长春工业大学,2021.
5
张海峰,张桂鑫,胡跃鑫,等.MAM相对分子质量对PLA/PBAT/MAM共混物结构与性能的影响[J].辽宁石油化工大学学报,2024,44(1):9-14.
6
PALAI B, BISWAL M, MOHANTY S, et al. In situ reactive compatibilization of polylactic acid(PLA)and thermoplastic starch(TPS)blends;synthesis and evaluation of extrusion blown films thereof[J]. Industrial Crops and Products, 2019, DOI: 10.1016/j.indcrop.2019.111748.
7
刘群,张玉苍.改性淀粉基生物降解塑料的研究进展[J].化工进展,2020,39(8):3124-3134.
8
KANG K S, LEE S I, LEE T J, et al. Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid)[J]. Korean Journal of Chemical Engineering, 2008, 25(3): 599-608.
9
QIAO R M, WANG X, QIN G J, et al. Degradation mode of PBAT mulching film and control methods duringits degradation induction period[J]. Mini-Reviews in Organic Chemistry, 2022, 19(5): 608-616.
10
李结瑶,罗文翰,翟万京,等.全降解PLA/PBAT/ESO保鲜膜在草莓保鲜中的应用研究[J].包装工程,2023,44(5):90-97.
11
张也.生物可降解聚己二酸对苯二甲酸丁二酯(PBAT)共混物及薄膜的制备与性能研究[D].长春:长春工业大学,2022.
12
来蕾.生物可降解聚己二酸对苯二甲酸丁二醇酯纳米复合材料及性能研究[D].杭州:浙江大学,2021
13
晏永祥,贺哲,张跃飞,等.可生物降解塑料PBAT共混改性研究进展[J].工程塑料应用,2021,49(5):158-161.
14
马鹏飞,王鑫,李栋辉,等.聚合物共混物增容技术及发展[J].材料工程,2019,47(2):26-33.
15
马俊鹏,张志峰,郑发伟,等.PBS未来发展趋势及研究展望[J].聚酯工业,2022,35(6):6-8.
16
MUTHURAJ R, MISRA M, MOHANTY A K. Biodegradable poly(butylenesuccinate) and poly(butylene adipate-co-terephthalate) blends: Reactive extrusionand performance evaluation[J].Journal of Polymers and the Environment, 2014, 22(3): 336-349.
17
陈宇,杨文德,戴文利.PBAT/PBS吹塑薄膜的制备[J].塑料,2022,51(2):1-4.
18
尹远,余月红,吴晓如.PLA/PBAT双向拉伸薄膜的制备及性能[J].工程塑料应用,2022,50(10):25-29.
19
李博,李娟,周万维,等.碳酸钙对PBAT/PLA复合材料性能的影响[J].工程塑料应用,2022,50(3):136-140.
20
杨光远,彭三文,王闻,等.PLA/PBAT共混纤维的制备及性能研究[J].合成纤维工业,2021,44(6):19-24.
21
SUN M Q, ZHANG L, LI C Z. Modified cellulose nanocrystals based on SI-ATRP for enhancing interfacial compatibility and mechanical performance of biodegradable PLA/PBAT blend[J]. Polymer Composites, 2022, 43(6): 3753-3764.
22
MING M H, ZHOU Y C, WANG L D, et al. Effect of polycarbodiimide on the structure and mechanical properties of PLA/PBAT blends[J]. Journal of Polymer Research, 2022, DOI: 10.1007/s10965-022-03227-8.
23
GUO J, FENG W, ZHANG S D, et al. Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity[J]. Journal of Applied Polymer Science,2020,DOI: 10.1002/app.48924.
24
庞启耀,赵阳,姜红,等.PBAT/PPC/nano-CaCO3复合薄膜的制备与性能研究[J].塑料科技,2022,50(2):1-5.
25
MAYES A M. Softer at the boundary[J]. Nature materials, 2005, 4(9): 651-652.
26
BALAZS A C, EMRICK T, RUSSELL T P. Nanoparticle polymer composites: Where two small worlds meet[J]. Science, 2006,314: 1107-1110.
27
CROSBY A J, LEE J Y. Polymer Nanocomposites: The"nano"effect on mechanical properties[J]. Polymer Reviews, 2007, 47(2): 217-229.
28
阴梦啸,汪艳,李春晖,等.用于FDM的PBAT/纳米CaCO3复合材料的制备及性能探究[J].化工新型材料,2022,50(7):110-113, 119.
29
NUNES C D, SOUZA A G, ROSAD D S. Use of a Chain extender as a dispersing agent of the CaCO3 into Pb at matrix[J].Journal of Composite Materials, 2019, 54(10): 1373-1382.
30
周耀文,秦增增,姚利.PBAT/CaCO3复合材料力学性能的研究[J].盐科学与化工,2022,51(8):24-26.
31
周志斌.无机纳米SiO2填充PLA/PBAT复合体系的制备及流变性能研究[D].株洲:湖南工业大学,2017.
32
GU X H, HOU J Y, AI S Y. Effect of silane modified nano‐SiO2 on the mechanical properties and compatibility of PBAT/lignin composite films[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1177/0021998319880282.
33
YANG X, WEI F Q, WANG Z N, et al. High-reactive silica nanosheets as compatibilizers for immiscible PLLA/PBAT polymer blends[J]. Composites Science and Technology, 2023, DOI: 10.1016/j.compscitech.2023.109979.
34
VENKATESAN R, RAJESWARI N. Preparation, mechanical and antimicrobialproperties of SiO2/poly(butylene adipate-co-terephthalate) films for active foodpackaging[J]. Silicon, 2019, 11(5): 2233-2239.
35
刘超,吴晓辉,卢咏来,等.片层钠基蒙脱土调控炭黑对天然橡胶/丁苯橡胶纳米复合材料性能的影响[J].橡胶工业,2023,70(4):251-259.
36
马调调.PBAT/OMMT复合材料的力学性能研究[J].橡塑技术与装备,2019,45(10):1-8.
37
PENG J, CHENG Q. High-performance nanocomposites inspired by nature[J]. Advanced Materials, 2017, DOI: 10.1002/adma.201702959.
38
LI W F, HUANG J H, LIU W F, et al. Lignin modified PBAT composites with enhanced strength based on interfacial dynamic bonds[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52476.
39
赵曼,陈蕴智,张楠,等.改性木质素/PBAT复合包装膜的研究[J].包装工程,2022,43(11):54-61.
40
何江,王大威.纤维素材料的改性与研究进展[J].复合材料学报,2022,39(7):3121-3130.
41
尹玉霞,楚云松.改性植物纤维增强PBAT复合材料的性能研究[J].塑料科技,2021,49(10):17-20.
42
黄伟江,吕广福,韦龙杰,等.PBAT/微晶纤维素复合材料的制备及性能研究[J].塑料科技,2021,49(9):12-16.
43
谢良科,黄骏成,龚泽威,等.不同生物质纤维及其添加量对PBAT复合材料结构与性能的影响[J].包装工程,2022,43(23):25-33.
44
葛铁军,赵婉晴,刘啸凤.PBAT/棕榈酰氯酯化改性秸秆粉复合材料制备与性能[J].工程塑料应用,2022,50(1):6-13, 65.
45
刘权,胡应模,李梦灿,等.PBAT/木粉复合材料的制备[J].工程塑料应用,2017,45(5):35-39.
46
付倩.PLA/PBAT可降解复合材料的制备及其注塑产品的仿真模拟[D].青岛:青岛科技大学,2023.
47
荣骁,王洪,邹威,等.聚乙二醇改性淀粉与PBAT复合材料的制备和性能[J].塑料,2022,51(2):13-17.
48
苏小雅,夏发明,王洪龙,等.淀粉/PBAT复合材料的相容性研究[J].塑料科技,2022,50(6):28-32.
49
LI W F, HUANG J H, LIU W F, et al. Lignin modified PBAT composites with enhanced strength based on interfacial dynamic bonds[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52476.
50
王晓慧,吕晓华,遆永周,等.一种可生物降解共聚酯的合成及表征[J].河南科学,2013,31(7):952-955.
51
JAPU C, DE LLARDUYA A M, ALLA A, et al.Bio-based PBT copolyesters derived from D-glucose: Influence of composition on properties[J]. Polymer Chemistry, 2014, 5(9): 3190-3202.
52
LEE S I, HAHN Y B, NAHM K S, et al. Synthesis of polyether-based polyurethane-silica nanocomposites with high elongation property[J]. Polymers for Advanced Technologies, 2005, 16(4): 328-331.
53
LAI L, WANG S L, LI J X, et al. Stiffening,strengthening,and toughening of biodegradable poly(butylene adipate-co-terephthalate)with a low nanoinclusion usage[J]. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2020.116687.

Comments

PDF(662 KB)

Accesses

Citation

Detail

Sections
Recommended

/