Effect of Magnesium Hydroxide Morphology on Flame Retardancy of Epoxy Resin

GUO Fan, JIAO Wei-xian, HUANG Lun, MENG Xi, LIU Chen, YE Dan-yang, LI Li-juan

PDF(4232 KB)
PDF(4232 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (03) : 99-105. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.020
Additives

Effect of Magnesium Hydroxide Morphology on Flame Retardancy of Epoxy Resin

Author information +
History +

Abstract

The morphology of the material has a great influence on its flame retardancy. In order to study the effects of magnesium hydroxide with different morphologies on the flame retardancy of epoxy resin, magnesium chloride and magnesium sulfate were used as raw materials to prepare magnesium hydroxide with rod, flake and flower, and were added to epoxy resin to prepare epoxy resin composite to explore the flame retardancy and the flame retardant mechanism. The results show that the diameter of rod magnesium hydroxide ranges from 250 nm to 500 nm and the length is about 5 μm. The flaky magnesium hydroxide has a hexagonal sheet structure with a size of 100 nm. The size of flower ball magnesium hydroxide is 1~2 μm. When the addition of magnesium hydroxide is 3%, the flame retardancy of epoxy resin is improved as: flake>flower>rod. Compared with pure epoxy resin, the addition of flaky magnesium hydroxide reduceds the TSP by 35.1%, the PHRR by 36.6%, and the PCOP by 39.4%. The research provides the direction for the application of magnesium hydroxide in polymers.

Key words

Magnesium hydroxide morphology / Epoxy resin / Flame retardancy

Cite this article

Download Citations
GUO Fan , JIAO Wei-xian , HUANG Lun , et al . Effect of Magnesium Hydroxide Morphology on Flame Retardancy of Epoxy Resin. Plastics Science and Technology. 2024, 52(03): 99-105 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.020

References

1
XIA L, MIAO Z, DAI J, et al. Facile fabrication of multifunctional flame retardant epoxy resin by a core-shell structural AgNC@boronate polymer[J]. Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2022.135402.
2
LIU X D, ZHENG X T, DONG Y Q, et al. A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.109840.
3
严伟,李乾波,杨春林,等.1-芘丁酸改性石墨烯片对环氧树脂阻燃性能的影响[J].塑料科技,2018,46(10):31-35.
4
LIU Q, WANG D, LI Z, et al. Recent developments in the flame-retardant system of epoxy resin[J]. Materials, 2020, DOI: 10.3390/ma13092145.
5
林绍铃,黄初,赵小敏,等.石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J].材料导报,2021,35(10):10184-10188.
6
孙敬宜,刘巧云,陈付生.二氧化铈修饰埃洛石纳米管颗粒对环氧树脂阻燃性能的研究[J].塑料科技,2021,49(2):14-18.
7
文渊,章飞,沈家伟,等.碱式碳酸镁阻燃天然橡胶复合材料的制备与性能研究[J].橡胶工业,2022,69(5):347-351.
8
毕晴晴.氢氧化镁表面改性及其在EP和EVA材料中的阻燃应用[D].沈阳:沈阳化工大学,2022.
9
艾梁辉.新型有机硼-氮和磷-氮化合物的合成、阻燃性能及其与无机阻燃剂协同阻燃性能[D].广州:华南理工大学,2023.
10
张继堂.系列环氧树脂复合材料的制备及阻燃性能研究[D].长春:吉林大学,2017.
11
LI Z, GONZÁLEZ A J, HEERALAL V B, et al. Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin[J]. Composites Part B Engineering, 2017, 138: 101-112.
12
DITTRICH B, WARTIG K A, HOFMANN D, et al. The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene[J]. Polymer Composites, 2015, 36(7): 1230-1241.
13
CHEN H, WEN X, GUAN Y, et al. Effect of particle size on the flame retardancy of poly(butylene succinate)/Mg(OH)2 composites[J]. Fire and Materials, 2016, 40(8): 1090-1096.
14
LU Y, WU C, XU S. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 1-11.
15
李振兴,陈建铭,宋云华.棒状氢氧化镁的合成[J].无机化学学报,2010,26(1):8-12.
16
赵卓雅,李祥高,王世荣,等.六角片状氢氧化镁(001)晶面优先生长条件的研究[J].人工晶体学报,2014,43(7):1611-1619.
17
张波,李丽娟,姬连敏,等.花球状氢氧化镁制备过程中的颗粒形成机理研究[J].广州化工,2010,38(10):3-6, 28.
18
PANG H C, NING G L, GONG W T, et al. Direct synthesis of hexagonal Mg(OH)2 nanoplates from natural brucite without dissolution procedure[J]. Chemical Communications, 2011, 47: 6317-6319.
19
WENSEL R W, PENALOZA M, CROSS W, et al. Adsorption behavior of oleate on Mg(OH)2 as revealed by FT-IR spectroscopy[J]. Langmuir, 1995, 11(11): 4593-4595.
20
YAO M, WU H, LIU H, et al. In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2020.109417.
21
朱云鹏,李庆华,沈芳,等.石墨烯/碱式硫酸镁晶须/PVC复合材料的制备及性能表征[J].塑料科技,2020,48(3):7-12.
22
LI X, ZHANG F, JIAN R, et al. Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: Flame retardancy, smoke suppression and mechanical properties[J]. Composites Part B: Engineering, 2019, DOI: 10.1016/j.compositesb.2019.107200.
23
ZHANG J, LI Z, YIN G, et al. Construction of a novel three-in-one biomass based intumescent fire retardant through phosphorus functionalized metal-organic framework and β-cyclodextrin hybrids in achieving fire safe epoxy[J]. Composites Communications, 2021, DOI: 10.1016/j.coco.2020.100594.
24
UNNIKRISHNAN V, ZABIHI O, LI Q, et al. Organophosphorus-functionalized zirconium-based metal-organic framework nanostructures for improved mechanical and flame retardant polymer nanocomposites[J]. ACS Applied Nano Materials, 2021, 4(12): 13027-13040.
25
TAWIAH B, YU B, YUEN R K K, et al. Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites[J]. Carbon, 2019, 150: 8-20.
26
FANG F, HUO S, SHEN H, et al. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins[J]. Composites Communications, 2019, DOI: 10.1016/j.coco.2019.11.011.
27
LIN S, TAO B, ZHAO X, et al. Surface functionalization of black phosphorus via amine compounds and its impacts on the flame retardancy and thermal decomposition behaviors of epoxy resin[J]. Polymers, 2021, DOI: 10.3390/polym13213635.
28
ZHANG Z, QIN J, ZHANG W. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2019.122777.

Comments

PDF(4232 KB)

Accesses

Citation

Detail

Sections
Recommended

/