Study on Pyrolysis Characteristics of High Modulus Glass Fiber/ Polyacrylic Acid Thermoplastic Resin Composites

HUANG Yi-zhou, CHEN Huang, HUANG Ming-fu, YU Xiong, WANG Jing, YANG Yong-jie, FENG Xue-bin

PDF(1355 KB)
PDF(1355 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (03) : 44-48. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.009
Theory and Research

Study on Pyrolysis Characteristics of High Modulus Glass Fiber/ Polyacrylic Acid Thermoplastic Resin Composites

Author information +
History +

Abstract

In the context of the difficulty of high-value recycling and treatment of thermoset composite waste, thermoplastic composites have a tendency to replace thermosetting composites, and exploring the thermal degradation mechanism of thermoplastic composites is conducive to guiding the use of thermoplastic composites under different working conditions and the subsequent recycling and degradation. The thermal degradation behavior of polyacrylic acid thermoplastic resin (RE) and thermoplastic resin glass fiber composites (RE-FRP) under different heating rates was compared and studied by a thermogravimetric analyzer under nitrogen atmosphere. The results show that the temperature of RE-FRP composites is higher than that of RE pure thermoplastic resin when the thermal degradation rate reaches the maximum. The activation energy of thermal degradation of the RE system measured by the Kissinger method was 196.76 kJ/mol, which was 232.91 kJ/mol less than that of the RE-FRP system. The Flynn-Wall-Ozawa method was used to calculate the activation energy, the apparent activation energy of the degradation reaction of the RE pure resin system fluctuated little with the change of degradation degree, the degradation reaction mechanism was simple, while the apparent activation energy of the RE-FRP system increased with the increase of degradation degree, and the degradation reaction had a more complex mechanism. The study shows that the thermal stability of RE-FRP thermoplastic resin is improved by combining with glass fiber.

Key words

Polyacrylic acid thermoplastic resin / Thermoplastic resin glass fiber composite / Thermal degradation / Dynamics

Cite this article

Download Citations
HUANG Yi-zhou , CHEN Huang , HUANG Ming-fu , et al . Study on Pyrolysis Characteristics of High Modulus Glass Fiber/ Polyacrylic Acid Thermoplastic Resin Composites. Plastics Science and Technology. 2024, 52(03): 44-48 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.009

References

1
申桂英.高性能热塑性塑料的品种与市场[J].精细与专用化学品,2016,24(9):1-4.
2
郭强,徐恒元,何凯,等.树脂基复合材料废弃物回收再利用现状及发展趋势[J].材料导报,2019,33(增刊2):634-638.
3
JIN Z, HAN Z, CHANG C, et al. Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: Interfacial modification, nano-filling and forming technology[J]. Composites science and technology, 2022. DOI: 10.1016/j.compscitech.2022.109660.
4
WANG Y Q, RAO Z, LIAO S, et al. Ultrasonic welding of fiber reinforced thermoplastic composites: Current understanding and challenges[J]. Applied Science and Manufacturing, 2021, DOI: 10.1016/J.COMPOSITESA.2021.106578.
5
SHAH S Z H, MEGAT-YUSOFF P S M, CHOUDHRY R S, et al. Experimental investigation on the quasi-static crush performance of resin-infused thermoplastic 3D fibre-reinforced composites[J]. Composites Communications, 2021, DOI: 10.1016/j.coco.2021.100916.
6
王子健,周晓东.连续纤维增强热塑性复合材料成型工艺研究进展[J].复合材料科学与工程,2021(10):120-128.
7
陶永亮,黄登懿,陈曦.PMMA/ASA合金材料在汽车零件中的应用[J].上海塑料,2020(1):41-45.
8
朱燕.丙烯酸树脂市场分析与展望[J].粘接,2012,33(11):31-33.
9
罗云烽,姚佳楠.高性能热塑性复合材料在民用航空领域中的应用[J].航空制造技术,2021,64(16):93-102.
10
周冰洁,张代军,张英杰,等.高性能热塑性复合材料在航空发动机短舱上的应用[J].航空制造技术,2020,63(7):86-91.
11
ABE H, TAKAHASHI N, KIM K J, et al. Effects of residual zinc compounds and chain-end structure on thermal degradation of poly(epsilon-caprolactone)[J]. Biomacromolecules, 2004, 5(4):1480-1488.
12
LIU Q Y, ZOU Y N, BEI Y L, et al. Mechanic properties and thermal degradation kinetics of terpolymer poly(propylene cyclohexene carbonate)s[J]. Materials Letters, 2008, 62(17/18): 3294-3296.
13
LEE J S, KOO J, LAM C, et al. Heating rate and nanoparticle loading effects on thermoplastic polyurethane elastomer nanocomposite kinetics[J]. Mateials Science Engineering, 2009, DOI: 10.2514/6.2009-4096.
14
郭俊鑫,吴正环,黎振,等.丙烯酸树脂及其复合材料热降解动力学研究[J].塑料科技,2020,48(2):10-15.
15
卢林刚,张晴,徐晓楠,等.一种无卤阻燃聚丙烯的热分解动力学[J].高分子材料科学与工程,2010,26(11):39-43.
16
魏涛,慈书亭,何敏,等.纳米蒙脱土、水滑石对阻燃型长玻纤增强聚丙烯阻燃性能及其降解动力学的影响[J].功能材料,2015,46(23):23051-23055.
17
周晓东,戴干策.过氧化物的引发作用对玻璃纤维增强聚丙烯界面结合的影响[J].高分子材料科学与工程,2000(5):88-91.
18
OTHMAN M B H, KHAN A, AHMAD Z, et al. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels[J]. Carbohydrate Polymers, 2016, 136(2): 1182-1193.
19
SENUMR G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of thermal analysis, 1977, DOI: 10.1007/BF01903696.
20
SÁNCHEZ-JIMÉNEZ P E, CRIADO J M, PÉREZ-MAQUEDA L A, et al. Kissinger kinetic analysis of data obtained under different heating schedules[J]. Journal of Thermal Analysis and Calorimetry, 2008, 94: 427-432.
21
YANG R T, STEINBERG M. Reaction kinetics and differential thermal analysis[J]. The Journal of Physical Chemistry, 1976, 80(9): 965-968.
22
BOUDOU J P, GEOLOGY J E J C. Molecular nitrogen from coal pyrolysis: Kinetic modelling[J]. Chemical Geology, 1995, 126(3/4): 319-33.
23
曾文茹,姚斌,宗若雯,等.非线性等转化率法研究聚苯乙烯热解反应活化能与转化率的关系[J].高分子材料科学与工程,2008(8):128-131.
24
RAJESHWARI P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes[J]. Journal of Thermal Analysis and Calorimetry, 2015, 123: 1523-1544.
25
OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.
26
LI J, LIU J, ZHANG J, et al. Non-isothermal curing reaction kinetics of TGDDM/1,4-bis(4-diaminobenzene-1-oxygen)n-butane[J]. CIESC Journal, 2013, DOI: 10.3969/j.issn.0438-1157.2013.09.046.
27
VYAZOVKIN S. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2):178-183.
28
VYAZOVKIN S, DOLLIMORE D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids[J]. Journal of Chemical information and computer sciences, 1996, 36(1): 42-45.
29
VYAZOVKIN S, CHRISSAFIS K, DI LORENZO M L, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations[J]. Thermochimica Acta, 2014, 590(19): 1-23.
30
FAN M J, LIU J L, LI X Y, et al. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system[J]. Thermochimica Acta, 2013, 554: 39-47.
31
TAN X C, HUANG Y Z, LI X Y, et al. Comparative study on the kinetic behavior of neat benzyl thiirane ether and benzyl glycidyl ether reacted with polyether amine[J]. Thermochimica Acta, 2016, 644: 6-12.

Comments

PDF(1355 KB)

Accesses

Citation

Detail

Sections
Recommended

/