Effect of New P/N Flame Retardant System on Flame Retardancy and Thermal Stability of Thin-walled Polypropylene Materials

AI Bo, XIAO Xiong, CHEN Yan-hao

PDF(1690 KB)
PDF(1690 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (03) : 1-7. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.001
Theory and Research

Effect of New P/N Flame Retardant System on Flame Retardancy and Thermal Stability of Thin-walled Polypropylene Materials

Author information +
History +

Abstract

In order to solve the difficult problem of flame retardant modification of thin-walled polypropylene (PP), diethyl aluminum hypophosphite (ADP), polyphosphate, and NOR flame retardant (NOR116) were added into PP to prepare flame retardant thin-walled PP. The effects of three flame retardants in different proportions on the flame retardancy, thermal stability and optical properties of PP materials were studied, and the flame retardancy mechanism was explored. The results show that when the mass ratio of ADP∶OL1001∶NOR116 is 5∶5∶1.5 and the total amount of flame retardant is 11.5%, the thin-walled PP (0.5 mm) material can reach VTM-0 grade and LOI is 28.5%, which has good thermal stability and charring performance. The crystallinity of PP decreases after the introduction of flame retardant system. When the total amount of flame retardant is 11.5%, the apparent activation energy of PP increases to 105.5 kJ/mol, which indicates that the introduction of flame retardant system can significantly improve the thermal stability of PP and delay the degradation of materials. NOR116 has obvious synergistic effect in gas phase, and ADP/OL1001/NOR116 system has rapid carbon formation in condensed phase and free radical capture and dilution effect in gas phase.

Key words

Thin-walled PP composites / Polyphosphate ester / Free radical trapping / Flame retardancy

Cite this article

Download Citations
AI Bo , XIAO Xiong , CHEN Yan-hao. Effect of New P/N Flame Retardant System on Flame Retardancy and Thermal Stability of Thin-walled Polypropylene Materials. Plastics Science and Technology. 2024, 52(03): 1-7 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.001

References

1
LIU C, HUANG J M, ZHU J H, et al. Synthesis of a novel azaphosphorine flame retardant and its application in epoxy resins[J]. Journal of Applied Polymer Science, 2018, DOI: 10.1002/app.45721.
2
刘志硕.聚丙烯高效无卤阻燃体系的开发及多功能化应用研究[D].北京:北京化工大学,2023.
3
杨通辉.抗熔滴阻燃改性聚丙烯的研究[D].上海:东华大学,2023.
4
XIAO D, GOHS U, WAGENKNECHT U, et al. Thermal stability and pyrolysis behavior of an efficient fire-retarded polypropylene containing allylamine polyphosphate and pentaerythritol[J]. Thermochimica Acta, 2022, DOI: 10.1016/j.tca.2021.179083.
5
XIE H L, LAI X J, LI H Q, et al. Fabrication of ZrP nanosheet decorated macromolecular charring agent and its efficient synergism with ammonium polyphosphate in flame-retarding polypropylene[J]. Composites Part A: Applied Science and Manufacturing, 2018,105: 223-234.
7
肖雄,胡爽,董玲玲.聚焦磷酸哌嗪对聚丙烯材料燃烧性能的影响及其阻燃机理研究[J].塑料科技,2020,48(2):131-137.
8
LU X S, QIAO X Y, YANG Tao, et al. Preparation and properties of environmental friendly nonhalogen flame retardant melamine cyanurate/nylon66 composites[J]. Journal of Applied Polymer Science, 2011, 122: 1688-1697.
9
UREYEN M E, KAYNAK E, YUKSEL G. Flame-retardant effects of cyclic phosphonate with HALS and fumed silica in polypropylene[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/app.48308.
10
CHEN H, WANG J, NI A, et al. The effects of a macromolecular charring agent with gas phase and condense phase synergistic flame retardant capability on the properties of PP/IFR composites[J]. Materials, 2018, DOI: 10.3390/ma11010111.
11
李湘.O-VMT和二乙基次磷酸铝对PBT/GF的阻燃作用[J].工程塑料应用,2021,49(4):131-134, 156.
12
石延超,王国建.有机磷阻燃剂的合成及在阻燃高分子材料中的应用研究进展[J].高分子材料科学与工程,2016,32(5):167-175.
13
WU N J, LI X T. Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite[J]. Polymer Degradation and Stability, 2014, 105: 265-276.
14
宋艳,许亮,李锦春,等.新型磷氮型阻燃剂的制备及其阻燃聚氨酯泡沫塑料[J].复合材料学报,2016,33(11):2461-2467.
15
刘琼宇,赖学军,张海丽,等.不同芳基磷酸酯与膨胀型阻燃剂复配阻燃PP的研究[J].塑料科技,2012,40(6):42-45.
16
XIE H L, LAI X J, LI H Q, et al. Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene[J]. Polymer Degradation and Stability, 2016, 130: 68-77.
17
AUBERT M, TIRRI T, WILEN C E, et al. Versatile bis(1-alkoxy-2,2,6,6-tetramethyl piperidin-4-yl)-diazenes (AZONORs) and related structures and their utilization as flame retardants in polypropylene, low density polyethylene and high-impact polystyrene[J]. Polymer Degradation and Stability, 2012, 97(8): 1438-1446.
18
王刚,唐禹,何冬青,等.含磷环氧树脂固化剂的合成表征与环氧树脂复合材料阻燃性能的研究[J].功能材料,2016,47(7):7135-7139, 7144.
19
张敬礼,周文君,王雪芹,等.新型阻燃木塑复合材料的制备及其性能研究[J].塑料工业,2014,42(1):112-117.
20
AUBERT M, WILEN C E, PFAENDNER R, et al. Bis(1-propyloxy-2,2,6,6-tetramethylpiperidi n-4-yl)-diazene-An innovative multifunctional radical generator providing flame retardancy to polypropylene even after extended artificial weathering[J]. Polymer Degradation and Stability, 2011, 96(3): 328-333.
21
YANG B, CHEN Y H, ZHANG M D, et al. Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/intumescent flame retardant composite system[J]. Composites Part A-Applied Science and Manufacturing, 2019, 123: 46-58.
22
YAN L, XU Z S, LIU D L. Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates[J]. Progress in Organic Coatings, 2019, 129: 327-337.
23
HUANG S W, XU J Y, DENG H M, et al. Comparison of pentaerythrotol and its derivatives as intumescent flame retardants for polypropylene[J]. Advances in Materials Science and Engineering, 2018, 15: 1-12.
24
WANG S X, ZHAO H B, RAO W H, et al. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties[J]. Polymer, 2018, 153: 616-625.
25
TANG W, QIAN L J, CHEN Y J, et al. Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene[J]. Polymer Degradation and Stability, 2019, DOI: 10.1016/j.polymdegradstab.2019.108982.
26
XIN F, ZHAI C C, GUO C, et al. Carbon nanotubes coated with phosphorus-nitrogen flame retardant and its application in epoxy thermosets[J]. Polymer Plastics Technology and Materials, 2019, 58(17): 1889-1899.
27
WANG X, KALALI E N, WAN J T, et al. Carbon-family materials for flame retardant polymeric materials[J]. Progress in Polymer Science, 2017, 69: 22-46.
28
TANG W, QIN Z, LIU F, et al. Influence of two kinds of low dimensional nano-sized silicate clay on the flame retardancy of polypropylene[J]. Materials Chemistry and Physics, 2020, DOI: 10.1016/j.matchemphys.2020.123743.
29
CHEN X, MA Y, CHENG Y, et al. Enhanced mechanical and flame-resistant properties of polypropylene nanocomposites with reduced graphene oxide-functionalized ammonium polyphosphate and pentaerythritol[J]. Journal of Applied Polymer Science, 2019, DOI: 10.1002/app.48036.
30
ZHANG Q, GUO Y, MAREK A A, et al. Design, fabrication and anti-aging behavior of a multifunctional inorganic-organic hybrid stabilizer derived from co-intercalated layered double hydroxides for polypropylene[J]. Inorganic Chemistry Frontiers, 2019, 6(9): 2539-2549.
31
HE S, GAO Y Y, ZHAO Z Y, et al. Fully bio-based phytic acid-basic amino acid salt for flameretardant polypropylene[J]. ACS Applied Polymer Materials, 2021, 3(3): 1488-1498.
32
BRITO J, HLUSHKO H, ABBOTT A, et al. Integrating antioxidant functionality into polymer materials: fundamentals, strategies, and applications[J]. ACS Applied Materials & Interfaces, 2021,13(35): 41372-41395.
33
CHRISTMANN J, J.L GARDETTE, PICHON G, et al. Photostabilization of polyethylene by a hindered amine light stabilizer in blooming conditions and impact of MDO processing[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/J.POLYMDEGRADSTAB.2021.109683.

Comments

PDF(1690 KB)

Accesses

Citation

Detail

Sections
Recommended

/