Research Progress of Inorganic Fillers/Polyvinylidene Fluoride Dielectric Composites

DENG Hong, SONG Bo, CHEN Meng-bing

PDF(839 KB)
PDF(839 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (02) : 124-128. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.026
Review

Research Progress of Inorganic Fillers/Polyvinylidene Fluoride Dielectric Composites

Author information +
History +

Abstract

High-dielectric polyvinylidene fluoride (PVDF) composites are widely used in electronic communications, new energy storage, aerospace and other fields due to their advantages of light weight, good flexibility, and easy processing. At present, PVDF matrix composites are mainly divided into two categories: inorganic/organic composite system and full organic composite system, but the application of full organic system is limited by its complex chemical process. This paper reviews the application status and research progress of three inorganic fillers in PVDF-based dielectric materials, namely ceramic particles, metal particles and carbon particles, and focuses on the research progress of expanded graphite, graphene oxide, carbon nanotubes, carbon black and carbon fiber in carbon fillers, and looks forward to the modification direction of inorganic fillers in PVDF composites.

Key words

Inorganic filler / Polyvinylidene fluoride / Dielectric composites / Dielectric constant

Cite this article

Download Citations
DENG Hong , SONG Bo , CHEN Meng-bing. Research Progress of Inorganic Fillers/Polyvinylidene Fluoride Dielectric Composites. Plastics Science and Technology. 2024, 52(02): 124-128 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.026

References

1
WAN C, BOWEN C R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure[J]. Journal of Materials Chemistry A, 2017, 5(7): 3091-3128.
2
ZHENG M S, ZHA J W, YANG Y, et al. Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly(vinylidene fluoride) composite films[J]. Applied Physics Letters, 2017, DOI: 10.1063/1.4989579.
3
黄蓉蓉,颜录科,闫啸天.高介电常数聚偏氟乙烯基复合材料的研究进展[J].绝缘材料,2016,49(3):7-10.
4
XIE B, ZHANG H, ZHANG Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO, nanowires[J]. Journal of Materials Chemistry A, 2017, 5: 6070-6078.
5
李志坚,邢继文,杜伯学,等.高储能聚合物材料复配体系研究进展[J].电气工程学报,2021,16(1):134-140.
6
路卫卫,蔡会武,刘畅,等.聚合物基全有机复合电介质材料研究进展[J].绝缘材料,2021,54(12):10-14.
7
谢蕊颖,刘雷鹏,吕生华,等.高储能PVDF基纳米复合材料研究进展[J].绝缘材料,2022,55(3):1-9.
8
PEDDIGARI M, PALNEEDI H, HWANG G T, et al. Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications[J]. Journal of the Korean Ceramic Society, 2018, 56(1): 1-23.
9
KAVITHA V, MAHALINGAM P, JEYANTHINATH M, et al. Optical and structural properties of tungsten-doped barium strontium titanate[J]. Materials Today: Proceedings, 2020, 23: 12-15.
10
TONG T, MA K. Dielectric properties and relaxation behavior of ZrO2/polyvinylidene fluoride composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2051-2058.
11
李国安.多维填料/聚偏氟乙烯复合材料的制备及性能研究[D].黑龙江:哈尔滨理工大学,2022.
12
ZHANG H, HENG T, FANG Z G, et al. Research progress of high-energy-density ceramic/poly(vinylidene fluoride) composite dielectrics[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2107-2122.
13
刘标.高储能聚丙烯基复合电介质的设计,制备与性能调控研究[D].西安:西安科技大学,2020.
14
KAUR S, SINGH D P. On the structural, dielectric and energy storage behaviour of PVDF-CaCu3Ti4O12 nanocomposite films[J]. Materials Chemistry and Physics, 2020, DOI: 10.1016/j.matchemphys.2019.122301.
15
阮圣平,董玮,吴凤清,等.高介电常数TiO2纳米晶的表面态研究[J].高等学校化学学报,2004(3):484-487.
16
GUO Y, WU S, LIU S, et al. Enhanced dielectric tunability and energy storage density of sandwich-structured Ba0.6Sr0.4TiO3/PVDF composites[J]. Materials Letters, 2022, DOI: 10.1016/j.matlet.2021.130910.
17
JIANG J, SHEN Z, QIAN J, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage[J]. Nano Energy, 2019, 62: 220-229.
18
雷振刚,孙静,朱永军,等.聚偏氟乙烯/钛酸钡高介电复合材料的制备[J].塑料,2014,43(6):13-16.
19
李方舟,凌志浩,程收,等.钛酸钡形貌对聚偏氟乙烯基复合材料介电性能的影响[J].化学工程师,2021,35(8):14-16.
20
周明,邓伟,王文琪,等.钛酸钡粒度分布及含量对聚偏氟乙烯基复合材料性能的影响[J].绝缘材料,2021,54(8):24-30.
21
KUSHWAH M, SAGAR R, ROGACHEV A A, et al. Dielectric, pyroelectric and polarization behavior of polyvinylidene fluoride (PVDF)-gold nanoparticles (AuNPs) nanocomposites[J]. Vacuum, 2019, 166: 298-306.
22
WANG H, REHWOLDT M, KLINE D J, et al. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites[J]. Combustion and Flame, 2019, 201: 181-186.
23
MORI K, TAKEUCHI H, NARITA F. Characteristics of energy harvesting using BaTiO3/Cu laminates with changes in temperature[C]//Behavior and Mechanics of Multifunctional Materials and Composites Ⅻ. SPIE, 2018.
24
WANG Y J, ZHAI J W, WANG F F, et al. Preparation and dielectric property of Ag/PVDF composite film[J].Advanced Materials Research, 2014, 989: 242-245.
25
NAN C W. Physics of inhomogeneous inorganic materials[J]. Progress in Materials Science, 1993, 37(1): 1-116.
26
李凌飞.无机填料改性聚1-丁烯基高储能复合膜的制备及介电性能[D].哈尔滨:哈尔滨工业大学,2021.
27
陈澄,董丽杰,李海蓉,等.聚偏氟乙烯/银粉复合材料的介电性能研究[J].武汉:武汉理工大学学报,2010(13):23-25.
28
王晨,李明,邓海金,等.亚微米Zn粉/PVDF复合材料的湿法制备与电性能研究[J].自然科学进展,2005(7):892-896.
29
DANG Z M, LIN Y H, NAN C W. Novel ferroelectric polymer composites with high dielectric constants[J]. Advanced Materials, 2003, 15(19): 1625-1629.
30
ZHENG X W, YU H T, YUE S S, et al. Functionalization of graphene and dielectric property relationships in PVDF/graphene nanosheets composites[J]. International Journal of Electrochemical Science, 2018, 13(1): 1-13.
31
BEGUM S, ULLAH H, KAUSAR A, et al. Fabrication of epoxy functionalized MWCNTs reinforced PVDF nanocomposites with high dielectric permittivity, low dielectric loss and high electrical conductivity[J]. Composites Science and Technology, 2018, 167: 497-506.
32
RANI P, AHAMED B, DESHMUKH K. Dielectric and electromagnetic interference shielding properties of zeolite 13X and carbon black nanoparticles based PVDF nanocomposites[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1002/app.50107.
33
BEYGMOHAMMDI F, KAZEROUNI H N, JAFARZADEH Y, et al. Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system[J]. Chemical Engineering Research and Design, 2020, 154: 232-240.
34
苏鹏程,蔡会武,王岩东,等.碳系填料/PVDF 基复合电介质材料的研究进展[J].应用化工,2022,51(11):3337-3340.
35
YANG D, KONG X, NI Y, et al. Improved mechanical and electrochemical properties of XNBR dielectric elastomer actuator by poly(dopamine) functionalized graphene nano-sheets[J]. Polymers, 2019, DOI: 10.3390/polym11020218.
36
Q C, LI Y, ZHONG Z K, et al. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates[J]. Applied Surface Science, 2018, 441: 945-954.
37
林雪梅,潘功配.可膨胀石墨的应用研究进展[J].江苏化工,2005,33(6):13-16.
38
GUO H C, DENG W, YANG B, et al. Preparation and properties of polyvinylidene fluoride/expanded graphite high dielectric composites[J]. Materials Reports, 2019, 33(20): 3520-3523.
39
HE H, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1/2): 53-56.
40
DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
41
罗睿,黄娇,杨尚科,等.石墨烯功能化改性聚偏氟乙烯介电复合材料的制备及其性能[J].复合材料学报,2022,39(8):3815-3827.
42
GUO H C, YANG B, HUANG G J, et al. Preparation and properties of polyvinylidene fluoride/graphene composites[J]. CIESC Journal, 2020, 71(4): 1881-1888.
43
刘文亮,季铁正,丁阳,等.聚合物/碳纳米管导电复合材料研究进展[[J].中国塑料,2008,22(9): 8-12.
44
张诚,俞苗锋,陈孟奇.MWNTs/PVDF复合材料导电和介电性能的研究[J].材料工程,2008(增刊1):291-296.
45
WANG L, DANG Z M. Carbon nanotube composites with high dielectric constant at low percolation threshold[J]. Applied Physics Letters, 2005, DOI: 10.1063/1.1996842.
46
CHEN L, LIU H C, YAN L, et al. Structure and properties of polyvinylidene fluoride dielectric composites modified by carbon nanotubes[J]. Materials Reports, 2020, 34(4): 4126-4131.
47
王金龙,王文一,史菁元,等.多壁碳纳米管/聚偏氟乙烯高介电常数复合材料的制备与性能[J].复合材料学报,2015,32(5):1355-1360.
48
张荣炜,刘凤岐.炭黑/聚合物复合材料的研究进展[J].高分子材料科学与工程,2005(3):45-49.
49
ZONG M J Z, WU W, ZHANG X W, et al. Preparation and characterization of carbon black filled thermoplastic polyurethane conductive composites[J]. Journal of East China University of Science and Technology, 2020, 46(3): 385-392.
50
黄响.改性炭黑填充聚丙烯复合材料导电性能研究[J].浙江化工,2019,50(4):14-16.
51
朱家铭,沈佳斌,郭少云.导电炭黑的层状分布对PVDF介电性能的影响研究[C]//中国化学会.2013年全国高分子学术论文报告会论文摘要集——主题G:光电功能高分子.上海,2013.
52
张恩贺,赵玉宝,杨文虎,等.改性炭黑对复合材料介电性能的影响[J].应用化工,2014,43(2):265-268.
53
ZHAO Y, SUN M C, ZHANG S Y, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285.
54
张新元,何碧霞,李建利,等.高性能碳纤维的性能及其应用[J].棉纺织技术,2011,39(4):65-68.
55
李威,郭权锋.碳纤维复合材料在航天领域的应用[J].中国光学,2011,4(3):201-212.
56
徐鲁宁,郭晓功,卢万杰.碳基-聚偏氟乙烯介电复合材料的研究进展[J].塑料科技,2021,49(9):109-112.
57
韩朋,井晓静,沈湘黔,等.氧化石墨烯,短切碳纤维改性聚偏氟乙烯复合膜的摩擦磨损及介电性能[J].机械工程材料,2013,37(2):53-56.
58
武晋萍.碳纤维/聚偏氟乙烯高介电复合材料制备与性能研究[D].北京:北京化工大学,2008.

Comments

PDF(839 KB)

Accesses

Citation

Detail

Sections
Recommended

/