Effect of Aluminate Coupling Agent Modified Nano-MICA Powder on PLA/PBAT System

ZHANG Chuang-chuang, LIN Qin-bao, LU Da-yong, ZHONG Huai-ning, CHENG Juan

PDF(1742 KB)
PDF(1742 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (02) : 84-89. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.018
Biological and Degradable Material

Effect of Aluminate Coupling Agent Modified Nano-MICA Powder on PLA/PBAT System

Author information +
History +

Abstract

Nanocomposite films were prepared by melting and blending nano-MICA powder modified with polylactic acid (PLA), polybutylene adipate-co-terephthalate (PBAT) and aluminate coupling agent. The properties of nanocomposite films were characterized by a Fourier transform infrared spectroscopy (FTIR), a water vapor transmittance tester, an oxygen transmittance tester, and TG-DSC synchronous thermal analysis instrument. The safety of nanocomposites was evaluated by total migration experiments and gas chromatography-mass spectrometry (GC-MS) to determine the specific migration of nanocomposites. The results show that the aluminate coupling agent successfully activates the nano-MICA powder. The glass transition temperature of PLA can be increased by modified nano-MICA powder, while the crystallinity of PLA first increases and then decreases, and the addition of 0.2% modified nano-MICA powder has the best effect. The thermal stability of the PLA/PBAT system decreases slightly with the increase of the amount of modified nano-MICA powder. The addition of 0.2% modified nano-MICA powder reduced the water vapor transmission coefficient of the film by 28%. The addition of nano-MICA powder enhances the interface roughness of the film, and the addition of modified nano-MICA powder can still meet the safety requirements as a food contact material.

Key words

Nano-MICA powder / Polylactic acid / Thermal property / Safety

Cite this article

Download Citations
ZHANG Chuang-chuang , LIN Qin-bao , LU Da-yong , et al . Effect of Aluminate Coupling Agent Modified Nano-MICA Powder on PLA/PBAT System. Plastics Science and Technology. 2024, 52(02): 84-89 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.018

References

1
BANGAR S P, WHITESIDE W S. Nano-cellulose reinforced starch bio composite films—A review on green composites[J]. International Journal of Biological Macromolecules, 2021, 185: 849-860.
2
HOSSEINI S F, JAVIDI Z, REZAEI M. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin[J]. International Journal of Biological Macromolecules, 2016, 92: 1205-1214.
3
WONGPHAN P, PANRONG T, HARNKARNSUJARIT N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film[J]. Food Packaging and Shelf Life, 2022, DOI: 10.1016/j.fpsl.2022.100844.
4
LI M, PU Y, THOMAS V M, et al. Recent advancements of plant-based natural fiber-reinforced composites and their applications[J]. Composites Part B: Engineering, 2020, DOI: 10.1016/j.compositesb.2020.108254.
5
BANGAR S P, WHITESIDE W S, ASHOGBON A O, et al. Recent advances in thermoplastic starches for food packaging: A review[J]. Food Packaging and Shelf Life, 2021, DOI: 10.1016/j.fpsl.2021.100743.
6
BASHA R K, KONNO K, KANI H, et al. Water vapor transmission rate of biomass based film materials[J]. Engineering in Agriculture, Environment and Food, 2011, 4(2): 37-42.
7
LIU Z, QIN Z, JIA H, et al. Dual-crosslinked starch-poly(ester urethane)-oligochitosan films with high starch content: Application as biodegradable food packaging[J]. Food Packaging and Shelf Life, 2023, DOI: 10.1016/j.fpsl.2023.101064.
8
CHONG W J, SHEN S, LI Y, et al. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility[J]. Smart Materials in Manufacturing, 2023, DOI: 10.1016/j.smmf.2022.100004.
9
FARAH S, ANDERSON D G, LANGER R, et al. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107: 367-392.
10
LUKIC I, VULIC J, IVANOVIC J. Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging[J]. Food Packaging and Shelf Life, 2020, DOI: 10.1016/j.fpsl.2020.100578.
11
YANG X, FAN W, GE S, et al. Advanced textile technology for fabrication of ramie fiber PLA composites with enhanced mechanical properties[J]. Industrial Crops and Products, 2021, DOI: 10.1016/j.indcrop.2021.113312.
12
SHIN H, THANAKKASARANEE S, SADEGHI K, et al. Preparation and characterization of ductile PLA/PEG blend films for eco-friendly flexible packaging application[J]. Food Packaging and Shelf Life, 2022, DOI: 10.1016/j.fpsl.2022.100966.
13
ZABIDI N A, NAZRI F, TAWAKKAL I S M A, et al. Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application[J]. International Journal of Biological Macromolecules, 2022, 212: 220-231.
14
董延茂,钟文芯,周兴,等.热塑性聚氨酯弹性体/聚乳酸复合材料的配方与性能研究[J].橡胶工业,2022,69(6):439-444.
15
FORTUNATI E, PELTZER M, ARMENTANO I, et al. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites[J]. Carbohydrate Polymers, 2012, 90(2): 948-956.
16
BORDES P, POLLET E, AVÉROUS L. Nano-biocomposites: Biodegradable polyester/nanoclay systems[J]. Progress in Polymer Science, 2009, 34(2): 125-155.
17
SAGAR N A, KUMAR N, CHOUDHARY R, et al. Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging[J]. Food Packaging and Shelf Life, 2022, DOI: 10.1016/j.fpsl.2022.100955.
18
AL-GHARRAWI M Z, WANG J, BOUSFIELD D W. Improving water vapor barrier of cellulose based food packaging using double layer coatings and cellulose nanofibers[J]. Food Packaging and Shelf Life, 2022, DOI: 10.1016/j.fpsl.2022.100895.
19
ALIOTTA L, CINELLI P, BEATRICE COLTELLI M, et al. Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization[J]. European Polymer Journal, 2019, 113: 78-88.
20
MARTINO V P, JIMÉNEZ A, RUSECKAITE R A, et al. Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates[J]. Polymers for Advanced Technologies, 2011, 22(12): 2206-2213.
21
宋树鑫,梁敏,王羽,等.纳米SiO2对聚乳酸薄膜阻隔性的影响[J].塑料工业,2016,44(11):112-117.
22
杨健,赵瑜,白小海.绝缘粉体对XLPE热缩膜耐击穿性能及力学性能的影响[J].塑料科技,2022,50(4):77-80.
23
梁林周,李春松,刘苏芹,等.云母粉改性高密度聚乙烯的汽油阻隔性[J].工程塑料应用,2017,45(11):30-34.
24
MAYOUF I, GUESSOUM M, FUENSANTA M, et al. Appraisal of ε-aprolactam and trimellitic anhydride potential as novel chain extenders for poly(lactic acid)[J]. Polymer Engineering and Science, 2020, 60(5): 944-955.
25
LIU W, ZHANG S, YANG K, et al. Preparation of graphene-modified PLA/PBAT composite monofilaments and its degradation behavior[J]. Journal of Materials Research and Technology, 2022, 20: 3784-3795.
26
刘逸涵.聚乳酸/铝酸酯改性碳酸钙体系的性能研究[D].长春:长春工业大学,2021.
27
ALI N A, NOORI F T M. Gas barrier properties of biodegradable polymer nanocomposites films[J]. Chemistry & Materials Research, 2014, 6(1): 44-51.
28
PARK J W, IM S S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate)[J]. Journal of Applied Polymer Science, 2002, 86(3): 647-655.
29
SHENG K, ZHANG S, QIAN S, et al. High-toughness PLA/bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char[J]. Composites Part B: Engineering, 2019, 165: 174-182.
30
LUO Y, LI W, WANG X, et al. Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2 [J]. Acta Materialia, 2009, 57(11): 3182-3191.
31
DEGHICHE A, HADDAOUI N, ZERRIOUH A, et al. Effect of the stearic acid-modified TiO2 on PLA nanocomposites: Morphological and thermal properties at the microscopic scale[J]. Journal of Environmental Chemical Engineering, 2021, DOI: 10.1016/j.jece.2021.106541.
32
ZHAO X, LIU J, LI J, et al. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials[J]. International Journal of Biological Macromolecules, 2022, 218: 115-134.
33
REN J, LI Y, LIN Q, et al. Development of biomaterials based on plasticized polylactic acid and tea polyphenols for active-packaging application[J]. International Journal of Biological Macromolecules, 2022, 217: 814-823.

Comments

PDF(1742 KB)

Accesses

Citation

Detail

Sections
Recommended

/