Effects of Chestnut Shell Pigment Addition on Performance of Cellulose-Based Liquid Mulching Film

SUN Zuo-ling, YAO Xian-fu, HE Zhao-yun, ZHOU Zhi-chao, YAO Zeng-yu

PDF(1835 KB)
PDF(1835 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (02) : 78-83. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.017
Biological and Degradable Material

Effects of Chestnut Shell Pigment Addition on Performance of Cellulose-Based Liquid Mulching Film

Author information +
History +

Abstract

Photoaging affects the performance and service life of degradable liquid plastic film. Melanin is a highly effective photoprotectant left by biological evolution. In this paper, melanin was used in liquid mulch film, and the effect of chestnut shell pigment on the performance of carboxymethyl cellulose liquid mulch film was discussed. The results showed that the addition of chestnut shell pigment significantly improved the tensile strength of the plastic film, reduced the elongation at break, made the film loose, increased the pores, and increased the water vapor permeability. The addition of chestnut shell pigment also significantly improved the antioxidant capacity and ultraviolet aging resistance of plastic film. When the mass ratio of chestnut shell pigment to carboxymethyl cellulose was 5:3, the liquid mulch film could effectively slow down the evaporation of soil water and had good soil water retention performance. Chestnut shell pigment can be used as a cheap and environmentally friendly degradable liquid mulch film photoprotectant.

Key words

Chestnut shell pigment / Carboxymethyl cellulose / Liquid mulching film / Anti-aging / Ultraviolet protectant

Cite this article

Download Citations
SUN Zuo-ling , YAO Xian-fu , HE Zhao-yun , et al . Effects of Chestnut Shell Pigment Addition on Performance of Cellulose-Based Liquid Mulching Film. Plastics Science and Technology. 2024, 52(02): 78-83 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.017

References

1
LIU E K, HE W Q, YAN C R. 'White revolution' to 'white pollution'—Agricultural plastic film mulch in China[J]. Environmental Research Letters, 2014, DOI: 10.1088/1748-9326/9/9/091001.
2
WANG J, LUO Y, TENG Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013, 180: 265-273.
3
WANG J, S, ZHANG M, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils[J]. Chemosphere, 2016, 151: 171-177.
4
QI Y, BERIOT N, GORT G, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties[J]. Environmental Pollution, 2020, DOI: 10.1016/j.envpol.2020.115097.
5
TAN Z, YI Y, WANG H, et al. Physical and degradable properties of mulching films prepared from natural fibers and biodegradable polymers[J]. Applied Sciences, 2016, DOI: 10.3390/app6050147.
6
KALE S K, DESHMUKH A G, DUDHARE M S, et al. Microbial degradation of plastic: A review[J]. Journal of Biochemical Technology, 2015, 6(2): 952-961.
7
YANG N, SUN Z X, FENG L S, et al. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research[J]. Materials and Manufacturing Processes, 2015, 30(2): 143-154.
8
SUN Z H S, NING R X, QING M H, et al. Sustainable and hydrophobic polysaccharide-based mulch film with thermally stable and ultraviolet resistance performance[J]. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.119865.
9
YANG C R, HE W Q, NEIL C. Plastic-film mulch in Chinese agriculture: Importance and problems[J]. World Agric, 2014, 4(2): 32-36.
10
YANG X X, STECK J, YANG J, et al. Degradable plastics are vulnerable to cracks[J]. Engineering, 2021, 7(5): 624-629.
11
GAN J, GUAN C X G, ZHANG X Y, et al. The preparation of anti-ultraviolet composite films based on fish gelatin and sodium alginate incorporated with mycosporine-like amino acids[J]. Polymers, 2022, DOI: 10.3390/polym14152980.
12
SUN J X, YU J K, JIANG Z J, et al. Fluorescent carbonized polymer dots prepared from sodium alginate based on the CEE effect[J]. ACS Omega, 2020, 5(42): 27514-27521.
13
QIAO R M, ZHAO C P, LIU J L, et al. Synthesis of novel ultraviolet absorbers and preparation and field application of anti-ultraviolet aging PBAT/UVA films[J]. Polymers, 2022, DOI: 10.3390/polym14071434.
14
王锐,张奇,刘颖,等.聚乙烯醇/CeP2O7复合膜及紫外老化性能研究[J].石油化工高等学校学报,2015,28(2):26-30.
15
LI J X, WANG S L, LAI L, et al. Synergistic enhancement of gas barrier and aging resistance for biodegradable films with aligned graphene nanosheets[J]. Carbon, 2021, DOI: 10.1016/J.CARBON.2020.09.071.
16
JIN D, XU S. The effects of polybenzimidazole and polyacrylic acid modified carbon black on the anti-UV-weathering and thermal properties of polyvinyl chloride composites[J]. Composites Science and Technology, 2018, 167: 388-395.
17
NOSANCHUK J D, CASADEVALL A. The contribution of melanin to microbial pathogenesis[J]. Cellular Microbiology, 2003, 5(4): 203-223.
18
KAYATZ P, THUMANN G, LUTHER T T, et al. Oxidation causes melanin fluorescence[J]. Investigative Ophthalmology & Visual Science, 2001, 42(1): 241-246.
19
HILL H Z. The function of melanin or six blind people examine an elephant[J]. Bioessays, 1992, 14(1): 49-56.
20
ZADLO A, PILAT A, SARNA M, et al. Redox active transition metalions make melanin susceptible to chemical degradation induced by organic peroxide[J]. Cell Biochemistry and Biophysics, 2017, 75: 319-333.
21
ROY S, HAI L V, KIM H C, et al. Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films[J]. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2019.115729.
22
SHANKAR S, WANG L F, RHIM J W. Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application[J]. Food Packaging and Shelf Life, 2019, DOI: 10.1016/j.fpsl.2019.100363.
23
ŁUKASZ Ł, SZYMON M, MARIUSZ Ś, et al. Alginate biofunctional films modified with melanin from watermelon seeds and zinc oxide/silver nanoparticles[J]. Materials, 2022, DOI: 10.3390/ma15072381.
24
GOSPODARYOV D V, LUSHCHAK V. Some properties of melanin produced by Azotobacter chroococcum and its possible application in biotechnology[J]. Biotechnologia Acta, 2011, 4(2): 61-69.
25
KOROLEVA O V, KULIKOVA N A, ALEKSEEVA T N, et al. A comparative characterization of fungal melanin and the humin-like substances synthesized by Cerrena maxima 0275[J]. Applied Biochemistry and Microbiology, 2007, 43(1): 61-67.
26
ZHOU M, SU P, QI J H, et al. Double-catalyzed base-acid synthesis of chestnut shell pigment resin cross-linked with formaldehyde[J]. Applied Mechanics and Materials, 2014, 3308(587/589): 663-668.
27
刘苏婷,宋诗军,方旭波,等.乌贼墨黑色素纳米粒对明胶-普鲁兰多糖复合膜的性能影响及表征[J].核农学报,2022,36(11):2210-2217.
28
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧光紫外灯:GB/T 14522—2008[S].北京:中国标准出版社,2008.
29
ROY S, RHIM J W. Agar-based antioxidant composite films incorporated with melanin nanoparticles[J]. Food Hydrocolloids, 2019, 94: 391-398.
30
ŁOPUSIEWICZ Ł, EMILIA D, PAULINA T, et al. Whey protein concentrate/isolate biofunctional films modified with melanin from watermelon (Citrullus ianatus) seeds[J]. Materials, 2020, DOI: 10.3390/ma13173876.
31
ŁOPUSIEWICZ Ł, JĘDRA F, MIZIELIŃSKA M. New poly(Iactic acid) active packaging composite films incorporated with fungal melanin[J]. Polymers, 2018, DOI: 10.3390/polym10040386.
32
YANG M, LI L, YU S, et al. High performance of alginate/polyvinyl alcohol composite film based on natural original melanin nanoparticles used as food thermal insulating and UV-vis block[J]. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2020.115884.
33
ROY S, RHIM J W. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin[J]. Food Hydrocolloids, 2018, 90: 500-507.
34
YAO Z Y, QI J H, WANG L H. Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells[J]. Journal of Food Science, 2012, 77(6): C671-C676.
35
付文强.5种植物黑色素对铅毒害柠条的缓解作用研究[D].昆明:西南林业大学,2022.
36
胡瑞省,刘会茹,顾丹丹,等.硬脂酸亚甲基C—H伸缩振动红外光谱研究[J].实验技术与管理,2014,31(10):71-75.
37
SNYDER R, HSU S, KRIMM S. Vibrational spectra in the C—H stretching region and the structure of the polymethylene chain[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1978, 34(4): 395-406.
38
张贝贝.羧甲基纤维素复合薄膜对废水中染料的吸附研究[D].烟台:烟台大学,2020.
39
ŁUKASZ Ł, PAWEŁ K, EMILIA D, et al. Preparation and characterization of carboxymethyl cellulose-based bioactive composite films modified with fungal melanin and carvacrol[J]. Polymers, 2021, DOI: 10.3390/polym13040499.

Comments

PDF(1835 KB)

Accesses

Citation

Detail

Sections
Recommended

/