
Influence of Structure of Dual-Optical Infrared Sorter on Removal Rate of Waste Plastic Bottles
LIU Bao-ying, YANG Chen-guang, LI Qing-zheng, LI Long, WANG Lei, ZHAI Hua
Influence of Structure of Dual-Optical Infrared Sorter on Removal Rate of Waste Plastic Bottles
Due to the large number of materials and colors of waste plastic bottles, the sorting process is very complicated. In order to improve the rejection rate of GLP4 plastic infrared sorter, three plastic bottles made of PET were selected as identification targets in the visible light+infrared light dual-optical path excitation environment. The proportion of mixed materials is controlled as 80% conventional blue-white-green (off-label+non-off-label), 10% twisted blue-white-green bottles, and 10% 1.2~1.5 L bottles, and the sorting test is carried out under visible light and infrared light. Firstly, fluent was used to simulate the air jet conditions under different nozzle diameters to determine the appropriate nozzle, and then the sample rejection rate under different working conditions was studied. The results show that when the nozzle diameter is 4.0 mm, the high-pressure gas can act on the material positioned at 100 mm, and the internal pressure of the nozzle is not completely consumed. The rejection rate of the sample is 99.36% when the new separator distance is 72 mm, the rejection rate is 99.08% at the angle of 0°, and the rejection rate is 99.48% when the nozzle diameter is 4.0 mm, which verifies the accuracy of the simulation results.
Dual-optical path infrared sorting / Waste plastic bottles / Nozzle model / Fluent software / Rejection rate
1 |
|
2 |
尹凤福,闫磊,韩清新,等.近红外光谱(NIR)分选技术在塑料分选领域的应用[J].环境工程,2017,35(12):134-138.
|
3 |
|
4 |
李文环,金尚忠,陈玲玲,等.基于近红外光谱结合主成分分析和BP神经网络的常用塑料快速鉴别[J].塑料工业,2016,44(12):124-127, 137.
|
5 |
|
6 |
李家帅,薛莲莲,王凯,等.基于近红外光谱的塑料分选技术预处理方法的优化[J].分析测试学报,2023,42(3):351-356.
|
7 |
陈飞扬,陈万锁.废塑料的分类分选、预处理及回收现状[J].中国资源综合利用,2021,39(10):118-134.
|
8 |
胡彪,王树桐,汤桂兰,等.基于Fluent的废旧塑料精准分选装置设计研究[J].应用力学学报,2015,32(6):1075-1081, 1109.
|
9 |
许瑞,杜长龙,曾锐,等.不同收缩角喷嘴的射流仿真研究[J].矿山机械,2011,39(2):36-39.
|
10 |
周文会.高压水射流喷嘴内外部流场的数值模拟研究[D].兰州:兰州理工大学,2008.
|
11 |
胡彪,赵俊华,李健毅.基于NIR混合废塑料识别仪分选效率的模型[J].环境工程学报,2016,10(10):5855-5860.
|
12 |
张嘉丽,李浩,梁文宏.基于FLUENT的高压精细雾化喷嘴特性研究[J].机电工程技术,2023,52(2):63-67.
|
13 |
胡寿高,冷和,杨怀宁,等.基于Fluent的高压清洗机喷嘴优化[J].农业装备与车辆工程,2021,59(7):113-116, 124.
|
14 |
王元荪.一种报废汽车金属塑料分选装置[J].再生资源与循环经济,2021,14(6):45.
|
15 |
张书敏,江龙发,周丽萍,等.再生塑料颗粒固体废物的典型特征及其识别技术[J].中国口岸科学技术,2021,3(9):70-76.
|
16 |
吕铷麟,贾镇,胡益滔,等.基于卷积神经网络的食品塑料包装袋光谱识别[J].包装工程,2022,43(3):121-128.
|
17 |
吴雪,冯巍巍,蔡宗岐,等.近红外光谱的海水微塑料快速识别[J].光谱学与光谱分析,2022,42(11):3501-3506.
|
18 |
朱珂郁,曹长林,杨松伟,等.近红外光谱技术原理及其在废杂塑料识别分选中的应用进展[J].福建师范大学学报:自然科学版,2021,37(5):109-116.
|
19 |
刘文杰,程晓阳.基于Fluent的高压水射流喷嘴优化模拟研究[J].能源与环保,2020,42(5):14-18.
|
20 |
王冰川,张凯,张聃,等.基于Fluent的超音速气液混合喷嘴模拟仿真[J].清洗世界,2020,36(1):35-37.
|
21 |
曾维,尹生阳,张凤.基于计算机视觉的垃圾塑料瓶识别与定位算法研究[J].电子测量技术,2021,44(23):12-17.
|
22 |
杨思节,冯巍巍,蔡宗岐,等.基于拉曼光谱技术的海水微塑料快速识别技术研究[J].光谱学与光谱分析,2021,41(8):2469-2473.
|
23 |
刘俊安,李嘉铭,赵楠,等.主成分分析结合支持向量机辅助激光诱导击穿光谱对塑料快速分类识别[J].光谱学与光谱分析,2021,41(6):1955-1960.
|
24 |
刘彪,徐亮,凌俊,等.塑料内胆纤维缠绕气瓶分层、脱胶缺陷的红外检测方法探究[J].特种设备安全技术,2020(1):21-22.
|
25 |
傅梗桂.聚乙烯废弃塑料高温高压碳化行为及其储锂性能[J].中国高新科技,2021(24):122-124.
|
26 |
李凡,李聪,刘思杨,等.废弃塑料瓶外表面污染物的成分分析[J].塑料工业,2022,50(9):139-142.
|
27 |
候宝瑞,杨鸿,李怡馨,等.一种基于紫外-可见吸收光谱的塑料瓶材质分类研究[J].中国科技信息,2021(8):91-92.
|
28 |
孙家政,姜红,朱晓晗,等.基于Fisher判别分析的塑料拖鞋XRF光谱鉴别[J].上海塑料,2022,50(2):60-64.
|
29 |
时逸之,陈芮,易靓,等.分子光谱成像对玉米粉中微塑料的深度无损表征[J].食品安全质量检测学报,2022,13(17):5534-5539.
|
30 |
张彤,黄昊翀,张自力,等.基于太赫兹时域光谱技术的塑料检测[J].中国激光,2022,49(13):141-150.
|
/
〈 |
|
〉 |