Effect of Graphene Content on Cell Morphology of Microcellular Foams

REN Jian-ping, XU Gang, ZHONG Qiang-qiang, HUANG Shi-xin

PDF(3273 KB)
PDF(3273 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (01) : 23-27. DOI: 10.15925/j.cnki.issn1005-3360.2024.01.005
Theory and Research

Effect of Graphene Content on Cell Morphology of Microcellular Foams

Author information +
History +

Abstract

In order to explore the morphological evolution of acrylonitrile-butadiene-styrene (ABS) microcellular foaming injection with graphene (GP) nanomaterials, the composites with different GP contents were prepared by the microcellular foaming injection process with ABS as the substrate and GP nanomaterials as additives. The effects of GP content on the foaming morphology of ABS/GP composites were discussed. The results show that the increase of GP content can improve the foam morphology of the composites and make the bubble size more uniform. However, when the content of GP exceeds 3%, the bubble shape of composites becomes irregular due to the GP extrusion. When the amount of GP is 2%, the agglomeration of GP is less. The thickness of ABS/2%GP composites is thinner than that of ABS/3%GP, which indicates that the dispersion of GP is better. In X-ray diffraction analysis, the peak value of GP appeared in ABS/GP composites, and the peak value of GP becomes more obvious with the increase of GP content.

Key words

Graphite / ABS / Microcellular foaming / Cell morphology / Compression molding

Cite this article

Download Citations
REN Jian-ping , XU Gang , ZHONG Qiang-qiang , et al. Effect of Graphene Content on Cell Morphology of Microcellular Foams. Plastics Science and Technology. 2024, 52(01): 23-27 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.005

References

1
李磊.纤维复合材料在汽车轻量化领域的研究应用[J].智能城市,2021,7(11):167-168.
2
匡唐清,罗杰,柳和生.超临界流体微孔注塑发泡制品的泡孔形态优化研究现状[J].高分子材料科学与工程,2023(5):153-163.
3
余鹏,樊丽君,杨永潮,等.基于超临界流体发泡技术制备开孔型微孔塑料的研究进展[J].高分子材料科学与工程,2020,36(10):160-169.
4
TULADHAR T R, MACKLEY M R. Experimental observations and modelling relating to foaming and bubble growth from pentane loaded polystyrene melts[J]. Chemical Engineering Science, 2004, 59: 5997-6014.
5
DONG G W, ZHAO G Q, GUAN Y J, et al. The cell forming process of microcellular injection-molded parts[J]. Journal of Applied Polymer Science, 2014, DOI: 10.1002/app.40365.
6
任建平.短碳纤维质量分数对增强PBT/CF复合材料性能的影响[J].塑料,2016,45(3):61-64.
7
ELDUQUE D, CLAVERÍA I, FERNÁNDEZ Á, et al. Methodology to analyze the influence of microcellular injection molding on mechanical properties with samples obtained directly of an industrial component[J]. Polymers & Polymer Composites, 2014, 22(8): 743-752.
8
LEE J W S, LEE R E, WANG J. Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles[J]. Chemical Engineering Science, 2017, 167: 105-119.
9
杨顺星,李海梅,张亚飞,等.注塑成形中气体反压技术的数值模拟[J].计算机辅助工程,2015,24(6):47-51, 65.
10
JONG W R, HWANG S S, KAO C H, et al. Visualization of counter pressure mechanism in gas-assisted injection molding process[J]. Journal of the Chinese Institute of Engineers, 2017, 40: 459-470.
11
董桂伟,赵国群,李帅,等.变模温与型腔气体反压辅助微孔发泡注塑技术及其产品内外泡孔结构演变[J].高分子材料科学与工程,2020(1):89-98.
12
任建平,郑贝贝,傅莹龙,等.型腔气体反压对微孔发泡泡孔结构与制品表面质量的影响[J].工程塑料应用,2021,49(3):71-76.
13
REN J P, LIN L, JIANG J, et al. Effect of gas counter pressure on the surface roughness, morphology, and tensile strength between microcellular and conventional injection-molded PP parts[J]. Polymers, 2022, DOI: 10.3390/polym14061078.
14
KUANG T K, CHANG L Q, CHEN F, et al. Facile preparation of lightweight high-strength biodegradable polymer/multi walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding[J]. Carbon, 2016, 105(4): 305-313.
15
CHEN S C, LIAO W H, CHIEN R D. Structure and mechanical properties of polystyrene foams made through microcellular injection molding via control mechanisms of gas counter pressure and mold temperature[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1125-1131.
16
蔡青.发泡剂对微发泡PP材料表面外观与基本性能的影响[J].上海塑料,2020(2):47-51.
17
KUMAR V. Phenomenology of bubble nucleation in the solid state nitrogen-polystyrene microcellular foams[J]. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2005, 263(1/3): 336-340.
18
GUO W, DENG F, MENG Z, et al. A hybrid back-propagation neural network and intelligent algorithm combined algorithm for optimizing microcellular foaming injection molding process parameters[J]. Journal of Manufacturing Processes, 2020, 50: 528-538.
19
李帅.气体反压技术对注塑熔体填充过程和塑件性能影响规律的研究[D].济南:山东大学,2015.
20
徐以国,裘洲通,向良明,等.化学微发泡成型外观表面技术研究[J].模具工业,2021,47(2):50-52, 64.
21
佟业蒙,王涛,叶维炜,等.基于X射线衍射法的含石英脉硅质板岩封闭应力测量[J].力学与实践,2022,44(4):875-883.
22
程时美.不同X射线残余应力测定方法的原理与应用[J].理化检验-物理分册,2021,57(11):13-19, 59.
23
HOU J J, ZHAO G Q, WANG G L. Polypropylene/talc foams with high weight- reduction and improved surface quality fabricated by mold- opening microcellular injection molding[J]. Journal of Materials Research and Technology, 2021, 12: 74-86.
24
吕冰倩,陆佳琪,刘威,等.石墨烯/ABS 3D打印复合材料的制备与性能研究[J].化工新型材料,2023,51(1):254-258, 263.

Comments

PDF(3273 KB)

Accesses

Citation

Detail

Sections
Recommended

/