Study on Flame Resistant of Fused Deposition 3D Printed Polyvinylidene Fluoride Composites

GONG Yu-mei, XU Yan, TUO Xiao-hang

PDF(1997 KB)
PDF(1997 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (01) : 17-22. DOI: 10.15925/j.cnki.issn1005-3360.2024.01.004
Theory and Research

Study on Flame Resistant of Fused Deposition 3D Printed Polyvinylidene Fluoride Composites

Author information +
History +

Abstract

Research and development of 3D printing consumables with high efficiency and flame resistance is an important topic in additive manufacturing. Polyvinylidene fluoride (PVDF) was used as the flame resistant matrix of 3D printing consumables, and polytetrafluoroethylene (PTFE), melamine polyphosphate (MPP) and triphenyl phosphate (TPP) were used as flame retardants. The high-efficiency flame resistant composites for 3D printing were successfully prepared by melt deposition molding method. The combustibility, thermal properties, and mechanical properties of PVDF matrix composites were comprehensively analyzed. The results show that MPP and TPP show a synergistic effect in enhancing the flame retardancy of 3D printed PVDF matrix composites, and the limiting oxygen index (LOI) is increased from 49.10% to 54.22%. In addition, the processability, thermal conductivity, and heat resistance of 3D printing composites are optimized by adding three flame retardants. Finally, the three-point bending properties of 3D printed composites are statistically evaluated by the Taguchi method, and it is found that reducing the amount of TPP is helpful to improve mechanical properties of materials.

Key words

Polyvinylidene fluoride / Flame resistance / 3D printing / Taguchi method

Cite this article

Download Citations
GONG Yu-mei , XU Yan , TUO Xiao-hang. Study on Flame Resistant of Fused Deposition 3D Printed Polyvinylidene Fluoride Composites. Plastics Science and Technology. 2024, 52(01): 17-22 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.004

References

1
TULLY J J, MELONI G N. A scientist's guide to buying a 3D printer: How to choose the right printer for your laboratory[J]. Analytical Chemistry, 2020, 92(22): 14853-14860.
2
张涛,杜国芳,张仲颖.不同3D打印技术塑料力学性能研究进展[J].塑料科技,2021,49(10):113-116.
3
VAHABI H, LAOUTID F, MEHRPOUYA M, et al. Flame retardant polymer materials: An update and the future for 3D printing developments[J]. Materials Science & Engineering: R: Reports, 2021, DOI: 10.1016/j.mser.2020.100604.
4
陈晓明,陆承麟,龚明,等.超大尺度高分子复合材料3D打印技术研发与应用[J].施工技术(中英文),2021,50(21):41-45, 63.
5
ZHAN Y Y, WU X J, WANG S S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2021.109684.
6
SHIE C Y, CHEN C C, CHEN H Y, et al. Flexible and self-powered thermal sensor based on graphene-modified intumescent flame-retardant coating with hybridized nanogenerators[J]. ACS Applied Nano Materials. 2023, 6: 2429-2437.
7
SOBOLA D, KASPAR P, CÁSTKOVÁ K, et al. PVDF fibers modification by nitrate salts doping[J]. Polymers, 2021, DOI: 10.3390/polym13152439.
8
FU Z, WANG H T, ZHAO X W, et al. Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: Simultaneously enhanced mechanical performance and flame retardancy[J]. Journal of Materials Chemistry A, 2019, 7: 4903-4912.
9
ZENG G F, ZHAO J Y, FENG C, et al. Flame-retardant bilayer separator with multifaceted van der waals interaction for lithium-Ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26402-26411.
10
黄红艳,杨斐,李辉.多层共挤制备光纤外包覆PVC材料及性能研究[J].塑料科技,2021,49(1):58-61.
11
XIAO F, ZHANG H X, LIU W, et al. Enhanced combustion performance of core-shell aluminum with poly(vinylidene fluoride) interfacial layer: Constructing the combination bridge of aluminum powder and poly(vinylidene fluoride)[J]. Surface & Coatings Technology, 2022, DOI: 10.1016/j.surfcoat.2022.128410.
12
FRONE A N, BATALU D, CHIULAN I, et al. Morpho-structural, thermal and mechanical properties of PLA/PHB/Cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3D printing[J]. Nanomaterials, 2020, DOI: 10.3390/nano10010051.
13
WEI C, ZHAO J C, WANG G L, et al. Strong and flame-retardant thermally insulating poly(vinylidene fluoride) foams fabricated by microcellular foaming[J]. Materials & Design, 2022, DOI: 10.1016/j.matdes.2022.110932.
14
SILAKAEW K, THONGBAI P. Continually enhanced dielectric constant of poly(vinylidene fluoride) with BaTiO3@poly(vinylidene fluoride) core-shell nanostructure filling[J]. Ceramics International, 2022, 48: 7005-7012.
15
WANG X Y, LIU Z, LIU X F, et al. Ultralight and multifunctional PVDF/SiO2@GO nanofibrous aerogel for efficient harsh environmental oil-water separation and crude oil absorption[J]. Carbon, 2022, 193: 77-87.
16
LI D T, GAO X X, CAO M, et al. High-performance nano-TiO2@polyvinylidene fluoride composite separators prepared by electrospinning for safe lithium-ion battery[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.53618.
17
GAO Z H, LUO L, WEN R Y, et al. A multifunctional composite membrane for high-safety lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11: 1774-1784.
18
Q, SONG Y J, WANG B, et al. Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries[J]. Journal of Energy Chemistry, 2023, 81: 613-622.
19
CHEN X S, YUSUF A, RIO J S D, et al. A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety[J]. Nano Energy, 2021, DOI: 10.1016/j.nanoen.2020.105656.
20
JIANG H, BI M, MA D, et al. Flame suppression mechanism of aluminum dust cloud by melamine cyanurate and melamine polyphosphate[J]. Journal of Hazardous Materials, 2019, 368: 797-810.
21
李雄武,郑兴铭,陈勇文,等.聚四氟乙烯对阻燃ABS性能的影响[J].塑料工业,2012,40(9):85-87.
22
ZHENG D, HUANG T, XU B, et al. 3D printing of n-Al/polytetrafluoroethylene-based energy composites with excellent combustion stability[J]. Advanced Engineering Materials, 2021, DOI: 10.1002/adem.202001252.
23
KUMAR R M, RAJINI N, KUMAR T S M, et al. Thermal and structural characterization of acrylonitrile butadiene styrene (ABS) copolymer blended with polytetrafluoroethylene (PTFE) particulate composite[J]. Materials Research Express, 2019, DOI: 10.1088/2053-1591/ab250f.
24
WU H, ARABY S, XU J, et al. Filling natural microtubules with triphenyl phosphate for flame-retarding polymer composites[J]. Composites Part A Applied Science & Manufacturing, 2018, 115: 247-254.
25
迟淑丽,田明伟,曲丽君.聚偏氟乙烯纤维的制备及其性能分析[J].棉纺织技术,2016,44(6):1-5.
26
马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状[J].材料导报,2006(增刊1):392-395.
27
ZHANG S H, CHU F K, XU Z M, et al. The improvement of fire safety performance of flexible polyurethane foam by highly-efficient P-N-S elemental hybrid synergistic flame retardant[J]. Journal of Colloid and Interface Science, 2021, 606: 768-783.
28
GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A Review[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108134.
29
DUN D X, LUO J Y, WANG M H, et al. Electromagnetic interference shielding foams based on poly(vinylidene fluoride)/carbon nanotubes composite[J]. Macromolecular Materials and Engineering, 2021, DOI: 10.1002/mame.202100468.
30
LI P, LIU C, WANG B, et al. Eco-friendly coating based on an intumescent flame-retardant system for viscose fabrics with multi-function properties: Flame retardancy, smoke suppression, and antibacterial properties[J]. Progress in Organic Coatings, 2021, DOI: 10.1016/j.porgcoat.2021.106400.
31
钟志强,胡志,梅青.三聚氰胺聚磷酸盐的合成及其阻燃聚丙烯的性能[J].工程塑料应用,2018,46(3):122-127.
32
SHI Z, ZHAO G Q, ZHANG L, et al. Lightweight, strong, flame-retardant PVDF/PMMA microcellular foams for thermal insulation fabricated by supercritical CO2 foaming[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2021.109554.
33
YAO W M, CAI K F, XU Y W, et al. Optimizing the beam-like structure of a vehicle body using the grey-fuzzy-Taguchi method[J]. Engineering Optimization, 2021, 53(1): 49-70.

Comments

PDF(1997 KB)

Accesses

Citation

Detail

Sections
Recommended

/