Study on Vibration Control of Carbon Fiber Reinforced Composite Laminates

YANG Zheng-xin, ZHANG Da, WANG Kai, DANG Peng-fei, ZHU Jian, WANG Shuang

PDF(1622 KB)
PDF(1622 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (01) : 1-5. DOI: 10.15925/j.cnki.issn1005-3360.2024.01.001
Theory and Research

Study on Vibration Control of Carbon Fiber Reinforced Composite Laminates

Author information +
History +

Abstract

Based on the state vector method and transfer matrix method, the coupled motion equations of piezoelectric ceramic-carbon fiber reinforced composite laminates are established. Dynamic models based on the state vector method and transfer matrix method can better reflect the inherent characteristics of laminated plates with different ply angles. The state space equations of the piezoelectric system composed of carbon fiber reinforced laminates and piezoelectric elements are solved in MATLAB by the established dynamic model. Comparing the analytical results with the finite element results, the simulation results are in good agreement with the analytical results, which verifies the correctness of the model. Through sliding mode control, the vibration time-domain response of laminated plates under different external excitation signals is analyzed. After the control is applied, the amplitude of the output response of the system decreases by about 50%.

Key words

Carbon fiber reinforced laminates / State-space method / Transfer matrix method / Sliding mode control

Cite this article

Download Citations
YANG Zheng-xin , ZHANG Da , WANG Kai , et al . Study on Vibration Control of Carbon Fiber Reinforced Composite Laminates. Plastics Science and Technology. 2024, 52(01): 1-5 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.001

References

1
于保军,司苏美,林洁琼,等.压电陶瓷驱动器建模与控制技术的研究[J].机械设计与制造,2019(3):135-139.
2
马绪强,苏正涛.民用航空发动机树脂基复合材料应用进展[J].材料工程,2020,10(48):48-59.
3
LEYENS C, KOCIAN F, HAUSMANN J, et al. Materials and design concepts for high performance compressor components[J]. Aerospace Science and Technology, 2003, 7(3): 201-210.
4
SWAMINATHAN T K K. Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory[J]. Composite Structures, 2002, 56(4): 329-344.
5
AAGAAH M R, MAHINFALAH M, JAZAR G N. Natural frequencies of laminated composite plates using third order shear deformation theory[J]. Composite Structures, 2006, 72(3): 273-279.
6
LIEW K M, HUNG K C, LIM M K. Method of domain decomposition in vibrations of mixed edge anisotropic plates[J]. International Journal of Solids & Structures, 1993, 30(23): 3281-3301.
7
QATU M S. Natural frequencies for cantilevered laminated composite right triangular and trapezoidal plates[J]. Composites Science and Technology, 1994, 51(3): 441-449.
8
KABIR H. On the frequency response of moderately thick simply supported rectangular plates with arbitrary lamination[J]. International Journal of Solids & Structures, 1999, 36(15): 2285-2301.
9
PAN E, HEYLIGER P R. Free vibrations of simply supported and multilayered magneto-electro-elastic plates[J]. Journal of Sound and Vibration, 2002, 252(3): 429-442.
10
PAN E, HEYLIGER P R. Exact solutions for magneto-electro-elastic laminates in cylindrical bending[J]. International Journal of Solids and Structures, 2003, 40(24): 6859-6876.
11
XIN L, HU Z. Free vibration of simply supported and multilayered magneto-electro-elastic plates[J]. Composite Structure, 2015, 121: 344-350.
12
MILAZZO A. Large deflection of magneto-electro-elastic laminated plates[J]. Applied Mathematical Modelling, 2014, 38: 1737-1752.
13
CHEN W Q, LEE K Y, DING H J. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates[J]. Journal of Sound and Vibration, 2005, 279: 237-251.
14
WANG X, SHEN Y. The general solution of three-dimensional problems in magnetoelectroelastic media[J]. International Journal of Engineering Science, 2002, 40(10): 1069-1080.
15
WU C P, LU Y C. A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates[J]. Composite Structure, 2009, 90(3): 363-372.
16
TABATABAEI S J S, FATTAHI A M. A finite element method for modal analysis of FGM plates[J]. Mechanics Based Design of Structures and Machines, 2022, 50(4): 1111-1122.
17
董彬,李志军,侯志波,等.风力机叶片平面内振动的准滑模控制[J].太阳能学报,2021,42(7):333-339.
18
DO X P, VAN M. Robust control for vibration control systems with dead-zone band and time delay under severe disturbance using adaptive fuzzy neural network[J]. Journal of the Franklin Institute, 2020, 357(17): 12281-12307.
19
QIU Z C, WANG T X, ZHANG X M, et al. Sliding mode predictive vibration control of a piezoelectric flexible plate[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(1): 65-81.
20
WANG J, CHEN L, FANG S. State vector approach to analysis of multilayered magneto-electro-elastic plates[J]. International Journal of Solids & Structures, 2003, 40(7): 1669-1680.

Comments

PDF(1622 KB)

Accesses

Citation

Detail

Sections
Recommended

/