基于改进YOLOv5s的不同成熟度苹果目标检测方法

王勇, 陶兆胜, 石鑫宇, 伍毅, 吴浩

PDF(8598 KB)
PDF(8598 KB)
南京农业大学学报 ›› 2024, Vol. 47 ›› Issue (03) : 602-611.

基于改进YOLOv5s的不同成熟度苹果目标检测方法

  • 王勇, 陶兆胜, 石鑫宇, 伍毅, 吴浩
作者信息 +
History +

摘要

[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。

关键词

苹果 / 成熟度 / 目标检测 / YOLOv5s / 深度学习 / 自然环境

中图分类号

TP183 / TP391.41 / S225

引用本文

导出引用
王勇, 陶兆胜, 石鑫宇, 伍毅, 吴浩. 基于改进YOLOv5s的不同成熟度苹果目标检测方法. 南京农业大学学报. 2024, 47(03): 602-611

基金

安徽省自然科学基金项目(2108085ME166); 安徽高校自然科学研究项目重点项目(KJ2021A0408)

评论

PDF(8598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/