
Dynamic Performance Analysis and Design Recommendations for Steel Frame Structure Supporting Reactors
WANG Fuming, WAN Jiaqi, CHEN Jingcheng, JIANG Youbao, YU Chenyu, LUO Xiaoyu
Dynamic Performance Analysis and Design Recommendations for Steel Frame Structure Supporting Reactors
Steel frame with the reactor is subjected to large and high-frequency dynamic load when the reactor is stirring. However, the design of this kind of steel frame structure usually adopts the static design method, and the static analysis cannot accurately describe the dynamic effect of the reactor acting on the structure. In order to efficiently research the dynamic effect of the steel frame supporting the reactor during the operation of reactor, a simplified modeling method is proposed in this paper to connect the reactor dynamic system with the steel frame using mass points and beam elements. Based on the current standard Vessel Supports—Part 4: Supporting Supports (NB/T 47065.4—2018), the performance of the bottom joint of the reactor support, the overall structure, and the dynamic response of the reactor stirring blade under different rotation directions are studied, and the optimization design research on this type of structure is conducted. The results show that the vessel supports and joints designed according to the current standard are the weak parts of the structure, while the optimization design of the support based on the S-N fatigue curve of steel can ensure the structure remain within the elastic limit during normal operation. The method of "opposite of adjacent" used on setting the rotation direction of the reactor stirring can make the load-bearing structure have the minimum elastic deformation. This study provides some reference for the related design and research work.
reactor / high-frequency dynamic load / reactor support / steel frame / dynamic response / S-N fatigue curve / optimization design
1 |
国家能源局.容器支座 第4部分:支承式支座:NB/T 47065.4—2018[S].北京:新华出版社,2018.
National Energy Administration.Vessel Support—Part 4:Bracket Support:NB/T 47065.4—2018[S].Beijing:Xinhua Publishing House,2018.(in Chinese)
|
2 |
中华人民共和国工业和信息化部.钢制化工容器设计基础规范:HG/T 20580—2020[S].北京:北京科学技术出版社,2020.
Ministry of Industry and Information Technology of the People’s Republic of China.Standard for Design Base of Steel Chemical Vessels:HG/T 20580—2020[S].Beijing:Beijing Science and Technology Press,2020.(in Chinese)
|
3 |
雷宏刚,付强,刘晓娟.中国钢结构疲劳研究领域的30年进展[J].建筑结构学报,2010,31(增刊1):84-91.DOI:10.14006/j.jzjgxb.2010.s1.017.
LEI Honggang,FU Qiang,LIU Xiaojuan. Research progress of steel structure fatigue in past 30 years in China[J].Journal of Building Structures,2010,31(Suppl.1):84-91.DOI:10.14006/j.jzjgxb.2010.s1.017.(in Chinese)
|
4 |
PIERALISI I,MONTANTE G,PAGLIANTI A.Prediction of fluid dynamic instabilities of low liquid height-to-tank diameter ratio stirred tanks[J].Chemical Engineering Journal,2016,295:336-346.DOI:10.1016/j.cej.2016.03.026.
|
5 |
BUSCIGLIO A,SCARGIALI F,GRISAFI F,et al.Oscillation dynamics of free vortex surface in uncovered unbaffled stirred vessels[J].Chemical Engineering Journal,2016,285:477-486.DOI:10.1016/j.cej.2015.10.015.
|
6 |
BUSCIGLIO A,MONTANTE G,KRACÍK T,et al.Rotary sloshing induced by impeller action in unbaffled stirred vessels[J].Chemical Engineering Journal,2017,317:433-443.DOI:10.1016/j.cej.2017.02.099.
|
7 |
李小虎.搅拌反应釜振动分析及结构优化[J].化工机械,2020,47(1):37-40,53.
LI Xiaohu.Vibration analysis and structure optimization of stirred vessels[J].Chemical Engineering & Machinery,2020,47(1):37-40,53.(in Chinese)
|
8 |
国家市场监督管理总局,国家标准化管理委员会.地脚螺栓:GB/T 799—2020[S].北京:中国标准出版社,2020.
State Administration for Market Regulation,National Standardization Administration.Foundation Bolts:GB/T 799—2020[S].Beijing:Standards Press of China,2020.(in Chinese)
|
9 |
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.机械工业厂房结构设计规范:GB 50906—2013[S].北京:中国计划出版社,2013.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.Code for Design of Machinery Industry Workshop Structures:GB 50906—2013[S].Beijing:China Planning Press,2013.(in Chinese)
|
10 |
WU T,HUANG F H,ZHANG D C,et al.Anchorage failure mechanism and uplift bearing capacity of L- & J-anchor bolts in plain concrete[J].Engineering Failure Analysis,2024,159:107991.DOI:10.1016/j.engfailanal.2024.107991.
|
11 |
YU S S,ZHU W C,NIU L L,et al.Experimental and numerical analysis of fully grouted long rockbolt load-transfer behavior[J].Tunnelling and Underground Space Technology,2019,85:56-66.DOI:10.1016/j.tust.2018.12.001.
|
12 |
SEOK S,HAIKAL G,RAMIREZ J A,et al.Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2)[J].Engineering Structures,2020,221:110984.DOI:10.1016/j.engstruct.2020.110984.
|
13 |
REN W,ZHOU X H,WANG J S,et al.Pull-out behavior of the pre-installed lifting anchor with supplementary reinforcement for the precast concrete segments of wind turbine hybrid towers[J].Engineering Structures,2024,303:117547.DOI:10.1016/j.engstruct.2024.117547.
|
14 |
NONAKA T,ALI A.Dynamic response of half-through steel arch bridge using fiber model[J].Journal of Bridge Engineering,2001,6(6):482-488.DOI:10.1061/(ASCE)1084-0702(2001)6:6(482).
|
15 |
GENIKOMSOU A S,POLAK M A.Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS[J].Engineering Structures,2015,98:38-48.DOI:10.1016/j.engstruct.2015.04.016.
|
16 |
WANG Y J,WU Z M,ZHENG J J,et al.Three-dimensional analytical model for the pull-out response of anchor-mortar-concrete anchorage system based on interfacial bond failure[J].Engineering Structures,2019,180:234-248.DOI:10.1016/j.engstruct.2018.11.024.
|
17 |
BENMOKRANE B,CHENNOUF A,MITRI H S.Laboratory evaluation of cement-based grouts and grouted rock anchors[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):633-642.DOI:10.1016/0148-9062(95)00021-8.
|
18 |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.紧固件机械性能 螺栓、螺钉和螺柱:GB/T 3098.1—2010[S].北京:中国标准出版社,2011.
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of China.Mechanical Properties of Fasteners—Bolts,Screws and Studs:GB/T 3098.1—2010[S].Beijing:Standards Press of China,2011.(in Chinese)
|
19 |
KE K,WANG F M,YAM M C H,et al.A multi-stage-based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls[J].Engineering Structures,2019,183:1091-1108.DOI:10.1016/j.engstruct. 2019.01.029.
|
20 |
王福明.多屈服段钢结构多次地震下的抗震性能与分析方法研究[D].长沙:湖南大学,2019.
WANG Fuming.Study on seismic performance and analysis method of multi-yield-stage steel structures subjected to multiple earthquake motions[D].Changsha:Hunan University,2019.(in Chinese)
|
21 |
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范:GB 50011—2010[S].2016版.北京:中国建筑工业出版社,2016.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.Code for Seismic Design of Buildings:GB 50011—2010[S].2016 ed.Beijing:China Architecture & Building Press,2016.(in Chinese)
|
22 |
Federal Emergency Management Agency.NEHRP Guidelines for the Seismic Rehabilitation of Buildings:FEMA 273[S].Washington,D.C.:Federal Emergency Management Agency,1997.
|
23 |
樊俊铃.基于能量耗散的Q235钢高周疲劳性能评估[J].机械工程学报,2018,54(6):1-9.DOI:10.3901/JME.2018.06.001.
FAN Junling.High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J].Journal of Mechanical Engineering,2018,54(6):1-9.DOI:10.3901/JME.2018.06.001.(in Chinese)
|
24 |
张艳霞,叶吉健,杨凡,等.自复位钢框架结构抗震性能动力时程分析[J].土木工程学报,2015,48(7):30-40.DOI:10.15951/j.tmgcxb.2015.07.004.
ZHANG Yanxia,YE Jijian,YANG Fan,et al.Seismic behavior time-history analysis of integral steel self-centering moment resisting frame[J].China Civil Engineering Journal,2015,48(7):30-40.DOI:10.15951/j.tmgcxb.2015.07.004.(in Chinese)
|
25 |
刘文锋,王来其,高彦强,等.高强钢筋混凝土框架抗震性能试验研究[J].土木工程学报,2014,47(11):64-74.DOI:10.15951/j.tmgcxb.2014.11.041.
LIU Wenfeng,WANG Laiqi,GAO Yanqiang,et al.Experimental study on seismic behavior of high-strength reinforced concrete frame[J].China Civil Engineering Journal,2014,47(11):64-74.DOI:10.15951/j.tmgcxb. 2014.11.041.(in Chinese)
|
26 |
CHOPRA A K.Dynamics of structures:theory and applications to earthquake engineering[M].4th ed.Upper Saddle River:Prentice Hall,2012.
|
27 |
CHOPRA A K,GOEL R K,CHINTANAPAKDEE C.Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands[J].Earthquake Spectra,2004,20(3):757-778.DOI:10.1193/1.1775237.
|
/
〈 |
|
〉 |