Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation

CAI Zhi-dan, FANG Ming, LI Zhe, XU Jia-lu

PDF(2130 KB)
PDF(2130 KB)
J Jilin Univ Eng Tech Ed ›› 2023, Vol. 53 ›› Issue (09) : 2649-2658. DOI: 10.13229/j.cnki.jdxbgxb.20230140

Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation

Author information +
History +

Abstract

To tackle the motion blur in the process of acquiring remote sensing images, an algorithm for blind deblurring of remote sensing images is designed. The algorithm is based on the geometric property of image surfaces and the algebraic property of image pixels, and it utilizes Gaussian curvature and reweighted graph total variation. First, the reweighted graph total variational prior and Gaussian curvature prior were combined to obtain the skeleton image which not only retains the gradient and sharp edge information, but also removes the harmful structural information in the latent clean image. Then, the skeleton image is used to estimate the fuzzy kernel, and then the non-blind deblurring algorithm is used to obtain the clear image. Finally, simulation validation was conducted on 8 fuzzy remote sensing images in different scenarios, and the results showed that, compared with other advanced image deblurring algorithms, the peak signal-to-noise ratio of the recovery effect of the deblurring algorithm proposed is higher than that of the comparison algorithm by 2.76, 1.84, 3.11, 2.79, 3.35, 2.76 dB, respectively. The structure similarity is higher than that of the comparison algorithm by 0.0792、0.0604、0.0873、0.0801、0.0997、0.0906, respectively. The remote sensing images recovered by our proposed algorithm have clear edge contours and local details while improving the clarity of remote sensing images.

Key words

computational mathematics / remote sensing image / Gaussian curvature / reweighted graph total variation / blind image deblurring

Cite this article

Download Citations
CAI Zhi-dan , FANG Ming , LI Zhe , et al. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2649-2658 https://doi.org/10.13229/j.cnki.jdxbgxb.20230140

References

1
王李祺, 候宇超, 高翔, 等. 基于深度学习与狮群SVM算法的遥感场景分类[J]. 吉林大学学报: 理学版, 2023, 61(4): 863-874.
Wang Li-qi, Hou Yu-chao, Gao Xiang, et al. Remote sensing scene classfication based on deep learning and lion swarm SVM algorithm[J]. Journal of Jilin University(Science Edition), 2023, 61(4): 863-874.
2
张玉波, 王建阳, 韩爽, 等. 一种非对称的轻量级图像盲与模糊网络[J]. 吉林大学学报: 理学版, 2023, 61(2): 362-370.
Zhang Yu-bo, Wang Jian-yang, Han Shuang, et al. An asymmetric lightweight image blind deblurring network[J]. Journal of Jilin University(Science Edition), 2023, 61(2): 362-370.
3
Lai W S, Ding J J, Lin Y Y, et al. Blur kernel estimation using normalized color-line priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 64-72.
4
Liu J, Yan M, Zeng T Y. Surface aware blind image deblurring[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 1041-1055.
5
Nah S, Kim T H, Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 257-265.
6
Kupyn O, Budzan V, Mykhailych M, et al. DeblurGAN: blind motion deblurring using conditional adversarial neworks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 8183-8192.
7
Zhang J W, Pan J S, Ren J, et al. Dynamic scene deblurring using spatially variant recurrent neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, USA, 2018: 2521-2529.
8
Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011: 233-240.
9
Xu L, Zheng S C, Jia J Y. Unnatural L0 sparse representation for natural image deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1107-1114.
10
Pan J, Su Z. Fast regularized kernel estimation for robust motion deblurring[J]. IEEE Signal Processing Letters, 2013, 20(9): 841-844.
11
Pan J S, Sun D Q, Pfister H, et al. Deblurring images via dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(10): 2315-2328.
12
岳有军, 云赛, 王红君, 等. 基于暗通道与低秩先验的运动模糊图像盲复原[J]. 电光与控制, 2019, 26(11): 95-98, 110.
Yue You-jun, Yun Sai, Wang Hong-jun, et al. Blind restoration of motion-blurred image based on dark channel and low-rank prior[J]. Electronics Optics & Control, 2019, 26(11): 95-98, 110.
13
Yan Y Y, Ren W Q, Gou Y F, et al. Image deblurring via extreme channels prior[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6978-6986.
14
Ge X, Tan J, Zhang L. Blind image deblurring using a non-linear channel prior based on dark and bright channels[J]. IEEE Transactions on Image Processing, 2021, 30: 6970-6984.
15
Chen L, Fang F, Wang T, et al. Blind image deblurring with local maximum gradient prior[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 1742-1750.
16
Ren Wen-qi, Cao Xiao-chun, Pan Jin-shan, et al. Image deblurring via enhanced low rank prior[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3426-3437.
17
Dong J X, Pan J S, Su Z X. Blur kernel estimation via salient edges and low rank prior for blind image deblurring[J]. Signal Processing: Image Communication, 2017, 58: 134-145.
18
Ge X Y, Tan J Q, Zhang L, et al. Blind image deblurring with Gaussian curvature of the image surface[J]. Signal Processing: Image Communication, 2022, 100: No.116531.
19
Tang Y, Xue Y, Chen Y, et al. Blind deblurring with sparse representation via external patch priors[J]. Digital Signal Processing, 2018, 78: 322-331.
20
Yu J, Chang Z, Xiao C. Blur kernel estimation using sparse representation and cross-scale self-similarity[J]. Multimedia Tools and Applications, 2019, 78(13): 18549-18570.
21
Berger P, Hannak G, Matz G. Graph signal recovery via primaldual algorithms for total variation minimization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 842-855.
22
Bai Y, Cheung G, Liu X, et al. Graph based blind image deblurring from a single photograph[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1404-1418.
23
Wen F, Ying R D, Liu Y P, et al. A simple local minimal intensity prior and an improved algorithm for blind image deblurring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(8): 2923-2937.
24
Zhang Z Y, Zheng L L, Piao Y J, et al. Blind remote sensing image deblurring using local binary pattern prior[J]. Remote Sensing, 2022, 14(5): No.1276.
25
Li Z Y, Guo J Y, Zhang Y T, et al. Reference based multi-level features fusion deblurring network for optical remote sensing images[J]. Remote Sensing, 2022, 14(11): No.2520.
26
Lim H, Yu S, Park K, et al. Texture aware deblurring for remote sensing images using L0-based deblurring and L2-based fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3094-3108.
27
王琪瑶, 胡琸悦, 李潇雁, 等. 基于局部最大和最小强度先验的遥感图像盲去模糊[J]. 激光与光电子学进展, 2023, 60(4): 429-436.
Wang Qi-yao, Hu Zhuo-yue, Li Xiao-yan, et al. Blind deblurring of remote sensing images based on local maximum and minimum intensity prior[J]. Laser and Optoelectronics Progress, 2022, 60(4): 429-436.
28
刘晨辉, 尹增山, 高爽. 基于遥感图像序列的运动去模糊算法研究[J]. 激光与光电子学进展, 2022, 59(8): 496-504.
Liu Chen-hui, Yin Zeng-shan, Gao Shuang. Motion deblurring algorithm based on remote sensing image sequence[J]. Laser and Optoelectronics Progress, 2022, 59(8): 496-504.
29
Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.
30
Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolution algorithms[C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: No.10836014.
31
Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors[J]. Advances in Neural Information Processing Systems, 2009, 22: 1033-1041.

Comments

PDF(2130 KB)

Accesses

Citation

Detail

Sections
Recommended

/