Loop detection based on uniform ORB

CHEN Mian-shu, YU Lu-lu, LI Xiao-ni, ZHENG Hong-yu

PDF(1916 KB)
PDF(1916 KB)
J Jilin Univ Eng Tech Ed ›› 2023, Vol. 53 ›› Issue (09) : 2666-2675. DOI: 10.13229/j.cnki.jdxbgxb.20211293

Loop detection based on uniform ORB

Author information +
History +

Abstract

Aiming to solve the aggregation problem of traditional uniform oriented FAST and rotated BRIEF(ORB) features in visual simultaneous localization and mapping(SLAM), a uniform FAST corner extraction method is designed, which is based on grid division and laying to determinate key points. Furthermore, a corresponding loop detection method is designed based on uniform distribution of ORB features combined with brute force matching. Experiment results compared with BoW-based loop detection algorithms show that the proposed algorithm can significantly improve the accuracy of loop detection. Furthermore, a robot operating system(ROS) based loosely coupled semi-direct SLAM system is designed, which combine the uniform ORB feature loop detection module with direct sparse odometry(DSO). The experimental results show that the proposed system has high map construction performance.

Key words

information processing technology / simultaneous localization and mapping(SLAM) / loop detection / uniform oriented FAST and rotated BRIEF(ORB) / brute force matching / direct sparse odometry(DSO)

Cite this article

Download Citations
CHEN Mian-shu , YU Lu-lu , LI Xiao-ni , et al. Loop detection based on uniform ORB. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2666-2675 https://doi.org/10.13229/j.cnki.jdxbgxb.20211293

References

1
Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99-108.
2
Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): part Ⅱ[J]. IEEE Robotics & Automation Magazine, 2006, 13(3): 108-117.
3
Angeli A, Filliat D, Doncieux S, et al. Fast and incremental method for loop-closure detection using bags of visual words[J]. IEEE Transactions on Robotics, 2008, 24(5): 1027-1037.
4
Cummins M, Newman P. FAB-MAP: probabilistic localization and mapping in the space of appearance[J]. International Journal of Robotics Research, 2008, 27(6): 647-665.
5
Cummins M, Newman P. Appearance-only SLAM at large scale with FAB-MAP 2.0[J]. International Journal of Robotics Research, 2011, 30(9): 1100-1123.
6
梁志伟, 陈燕燕, 朱松豪, 等. 基于视觉词典的单目视觉闭环检测算法[J]. 模式识别与人工智能, 2013, 26(6): 561-570.
Liang Zhi-Wei, Chen Yan-Yan, Zhu Song-Hao, et al. Loop closure detection algorithm based on monocular vision using visual dictionary[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(6): 561-570.
7
Zhang H, Liu Y L, Tan J D. Loop closing detection in RGB-D SLAM combining appearance and geometric constraints[J]. Sensors, 2015, 15(6): 14639-14660.
8
Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3): 145-175.
9
Yang L, Hong Z. Visual loop closure detection with a compact image descriptor[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 2012: No. 13195481.
10
Yang Z, Pan Y, Deng L, et al. PLSAV: Parallel loop searching and verifying for loop closure detection[J]. IET Intelligent Transport Systems, 2021, 15(5): 683-698.
11
Bai D D, Wang C Q, Zhang B, et al. CNN feature boosted SeqSLAM for real-time loop closure detection[J]. Chinese Journal of Electronics, 2018, 27(3): 488-499.
12
Wang Z, Peng Z, Guan Y, et al. Two-stage vSLAM loop closure detection based on sequence node matching and semi-semantic autoencoder[J]. Journal of Intelligent & Robotic Systems, 2021, 101(2): 1-21.
13
Mukherjee A, Chakraborty S, Saha S K. Detection of loop closure in SLAM: a DeconvNet based approach[J]. Applied Soft Computing Journal, 2019, 80: 650-656.
14
Liu Qiang, Duan Fu-hai. Loop closure detection using CNN words[J]. Intelligent Service Robotics, 2019, 12(4): 303-318.
15
Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 2564-2571.
16
Rosten E, Drummond T. Machine learning for high-speed corner detection[C]//Computer Vision-ECCV 2006: Part I, Berlin, Germany, 2006: 430-443.
17
于录录. 视觉SLAM中回环检测算法的研究[D]. 长春: 吉林大学通信工程学院, 2021.
Yu Lu-lu. Research on loop detection in visual SLAM[D]. Changchun: College of Communication Engineering, Jilin University, 2021.
18
Quigley M, Conley K, Gerkey B, et al. Ros: an open-source robot operating system[J/OL]. [2021-03-22].
19
Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625.
20
Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163.
21
Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
22
Horn B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987, 4(4): 629-642.
23
Engel J, Usenko V, Cremers D. A photometrically calibrated benchmark for monocular visual odometry[J/OL]. [2021-03-25].

Comments

PDF(1916 KB)

Accesses

Citation

Detail

Sections
Recommended

/