Suppression characteristics of vehicle-bridge coupling vibration of long-span cable-stayed bridge with resilient wheels

CHEN Zhao-wei, PU Qian-hua

PDF(4864 KB)
PDF(4864 KB)
J Jilin Univ Eng Tech Ed ›› 2023, Vol. 53 ›› Issue (09) : 2519-2532. DOI: 10.13229/j.cnki.jdxbgxb.20211258

Suppression characteristics of vehicle-bridge coupling vibration of long-span cable-stayed bridge with resilient wheels

Author information +
History +

Abstract

In order to prove the adaptability of the metro train-bridge (especially long-span bridge) system to resilient wheels from the perspective of dynamics, the influence of resilient wheels on the long-span cable-stayed bridge (LSCSB) on the vibration of the metro train-bridge system and its suppression characteristics was studied. Based on the vehicle-track coupling dynamics theory, a coupled dynamic model of metro train-LSCSB system considering resilient wheel was established. Adopting the model, the effect of resilient wheels on the vibration characteristics of metro train and LSCSB under the combined disturbance of long-short wave irregularities was studied, the damping effect of resilient wheel on metro train-LSCSB system is proved from time-frequency domain. The results show that when metro train running through, the resilient wheel can effectively reduce the wheel/rail force, vibration of the wheel and axle box. Compared with the traditional rigid wheel, the vibration of rim is the most intense, followed by the vibration of traditional rigid wheel, and the vibration of web is the smallest. Based on the propesd dynamic parameters of the resilient wheel, the excellent frequency of the resilient wheel vibration is concentrated in 10 Hz to 50 Hz, and there is a peak around 25 Hz. The main frequency of the bridge vertical and lateral vibration is about 1 Hz. The resilient wheels can effectively reduce the mid-low frequency vibrations of LSCSB.

Key words

vehicle engineering / resilient wheel / long-span cable-stayed bridge / time-frequency analysis / vibration reduction

Cite this article

Download Citations
CHEN Zhao-wei , PU Qian-hua. Suppression characteristics of vehicle-bridge coupling vibration of long-span cable-stayed bridge with resilient wheels. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2519-2532 https://doi.org/10.13229/j.cnki.jdxbgxb.20211258

References

1
Bouvet P, V'meent N, Coblentz A, et al. Optimization of resilient wheels for rolling noise control[J]. Journal of Sound and Vibration, 1996, 1993(1): 253-260.
2
Makoto I I. 弹性车轮对轨道动态性能的作用[J]. 国外铁道车辆, 1998(6): 34-40.
Makoto I I. The effect of elastic wheels on track dynamic performance[J]. Foreign Railway Vehicles, 1998(6): 34-40.
3
Remington P J. Wheel/rail rolling noise, I: theoretical analysis[J]. Acoust Soc Am, 1987, 81(6): 1805-1823.
4
黄彪, 戚援, 杜利清. 弹性车轮非线性有限元分析及疲劳强度校核[J]. 轨道交通装备与技术, 2014(2): 44-47.
Huang Biao, Qi Yuan, Du Li-qing. Nonlinear finite element analysis and fatigue strength check of elastic wheels[J]. Rail Transportation Equipment and Technology, 2014(2): 44-47.
5
戚援, 侯传伦, 杜利清, 等. 低地板车辆用块式橡胶弹性车轮的研制[C]//第十七届中国科协年会, 广州, 2015: No.6.
6
Cigada A, Manzoni S, Vanali M. Geometry effects on the vibro-acoustic behavior of railway resilient wheels[J]. Vibration Control, 2011, 17(12): No.1761.
7
Lopez I, Vera E, Busturia J M, et al. Theoretical and experimental analysis of ring damped railway wheels[C]//In Proceedings of the ISMA21 Conference, Leuven, Belgium, 1996: 787-794.
8
张乐. 弹性车轮结构刚度和强度研究[D]. 成都:西南交通大学机械工程学院, 2014.
Zhang Le. Research on stiffness and strength of elastic wheel structure[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2014.
9
邢璐璐, 李芾, 付政波. 弹性车轮车辆临界速度及曲线通过性能分析[J]. 电力机车与城轨车辆, 2012, 35(1): 25-28.
Xing Lu-lu, Li Fu, Fu Zheng-bo. Analysis of the critical speed and curve passing performance of flexible wheel vehicles[J]. Electric Locomotives and Urban Rail Vehicles, 2012, 35(1): 25-28.
10
孙明昌, 曾京, 徐志胜. 弹性轮对车辆-轨道垂向耦合系统动力学研究[J]. 铁道车辆, 2003(1):15-20.
Sun Ming-chang, Zeng Jing, Xu Zhi-sheng. Dynamics study of elastic wheelset vehicle-track vertical coupling system[J]. Railway Vehicle, 2003(1):15-20.
11
文娟. 弹性车轮动力学性能及纵向振动研究[D].西南交通大学机械工程学院, 2016.
Wen Juan. Research on dynamic performance and longitudinal vibration of elastic wheel[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2016.
12
杨阳, 丁军君, 李芾, 等. 弹性车轮等效刚度对车辆动力学性能的影响[J]. 中国铁道科学, 2018, 39(3): 63-70.
Yang Yang, Ding Jun-jun, Li Fu, et al. The effect of the equivalent stiffness of elastic wheels on vehicle dynamics[J]. China Railway Science, 2018, 39(3): 63-70.
13
郭文浩, 池茂儒, 杨飞, 等. 弹性轮对对轮轨动作用力的影响[J]. 机械, 2011, 38(9):1-7.
Guo Wen-hao, Chi Mao-ru, Yang Fei, et al. The effect of elastic wheel pair on wheel-rail action force[J]. Machinery, 2011, 38(9):1-7.
14
刘玉霞, 韩健, 周信, 等. 弹性车轮减振降噪特性分析[J]. 铁道学报, 2015, 37(6): 48-53.
Liu Yu-xia, Han Jian, Zhou Xin, et al. Analysis of vibration and noise reduction characteristics of elastic wheels[J]. Journal of the China Railway Society, 2015, 37(6):48-53.
15
周信. 地铁弹性车轮的减振降噪及动态特性研究[D]. 成都: 西南交通大学机械工程学院, 2019.
Zhou Xin. Research on vibration and noise reduction and dynamic characteristics of subway elastic wheels[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2019.
16
Han J, He Y, Xiao X, et al. Effect of control measures on wheel/rail noise when the vehicle curves[J]. Applied Sciences, 2017, 7(11): No.1144.
17
张小强, 黄振兴, 侯传伦. 弹性车轮在地铁车辆上的应用及分析[J]. 机车车辆工艺, 2020(3): 11-15.
Zhang Xiao-qiang, Huang Zhen-xing, Hou Chuan-lun. Application and analysis of elastic wheels on metro vehicles[J]. Locomotive and Rolling Stock Technology, 2020(3): 11-15.
18
Claus H, Schiehlen W. Dynamic stability and random vibrations of rigid and elastic wheelsets[J]. Nonlinear Dynamics, 2004, 36(2-4): 299-311.
19
Arai H. On the acoustic and dynamic characteristics of resilient wheel:1st report, comparison with various types of wheels[J]. Transactions of the Japan Society of Mechanical Engineers C, 1983, 49: 543-552.
20
李小珍, 强士中, 沈锐利. 高速列车-大跨度钢斜拉桥空间耦合振动响应研究[J]. 桥梁建设, 1998(4):67-70.
Li Xiao-zhen, Qiang Shi-zhong, Shen Rui-li. Research on spatial coupling vibration response of high-speed train and long-span steel cable-stayed bridge[J]. Bridge Construction, 1998(4): 67-70.
21
Zhai W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Yournal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214.
22
陈兆玮. 高速铁路桥墩沉降对行车性能影响的研究[D]. 成都:西南交通大学机械工程学院, 2017.
Chen Zhao-wei. Influence of pier settlement on dynamic performance of running trains in high-speed railway[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2017.
23
向波, 周逸, 陈县伟. 东水门长江大桥动力特性监测系统研究[J]. 西部交通科技, 2015(11): 46-50.
Xiang Bo, Zhou Yi, Chen Xian-wei. Research on the dynamic characteristics monitoring system of dongshuimen yangtze river bridge[J]. Western Transportation Science and Technology, 2015(11): 46-50.
24
袁万城, 崔飞, 张启伟. 桥梁健康监测与状态评估的研究现状与发展[J]. 同济大学学报:自然科学版, 1999(2): 59-63.
Yuan Wan-cheng, Cui Fei, Zhang Qi-wei. Research status and development of bridge health monitoring and condition assessment[J]. Journal of Tongji University (Natural Science Edition), 1999(2): 59-63.
25
杨学志, 严普强, 张锻, 等. DP传感器研究及桥梁自振特性测试[J]. 振动.测试与诊断, 1997(2):53-58.
Yang Xue-zhi, Yan Pu-qiang, Zhang Duan, et al. DP sensor research and bridge natural vibration characteristics test[J]. Journal of Vibration,Measurement & Diagnosis, 1997(2): 53-58.
26
严普强, 乔陶鹏. 工程中的低频振动测量与其传感器[J]. 振动.测试与诊断, 2002(4): 39-75.
Yan Pu-qiang, Qiao Tao-peng. Low-frequency vibration measurement and its sensors in engineering[J]. Vibration, Testing and Diagnsis, 2002(4): 39-75.
27
翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.
28
Sato Y. Study on high-frequency vibration in track operation with high-speed trains[J]. Quarterly Report of RTRI, 1997, 18(3): 109-114.
29
杨阳, 李芾, 戚壮, 等. 弹性车轮动力学复合模型及其性能研究[J]. 中国铁道科学, 2015, 36(4): 93-100.
Yang Yang, Li Fu, Qi Zhuang, et al. Composite model of elastic wheel dynamics and its performance research[J]. China Railway Science, 2015, 36(4): 93-100.
30
Claus H, Len W S. Dynamic stability and random vibrations of rigid and elastic wheelsets[J]. Nonlinear Dynamics, 2004, (36): 299-311.

Comments

PDF(4864 KB)

Accesses

Citation

Detail

Sections
Recommended

/