Analysis of drawbar pull to CE-4 Lunar rover based on rutting image of wheel

HU Zhen-yu, SHEN Yan, WANG Wei-jun, LUO Xiao-tao, ZOU Meng

PDF(1699 KB)
PDF(1699 KB)
J Jilin Univ Eng Tech Ed ›› 2023, Vol. 53 ›› Issue (09) : 2474-2482. DOI: 10.13229/j.cnki.jdxbgxb.20211193

Analysis of drawbar pull to CE-4 Lunar rover based on rutting image of wheel

Author information +
History +

Abstract

In order to assess the lunar surface trafficability of YuTu-2 lunar rover, a kind of method of lunar rover drawbar pull evaluation based on slip ration information was proposed. The wheel of the Yutu-2 lunar rover and its ground prototype were used as the test objects, the YuTu-2's lunar drive was simulated by the whole vehicle test and soil trough test. With the input parameters of rutting information, slip rate and wheel load, the calibration models of sinkage-slip rate and rut spacing-slip rate were established, the slip rate was identified by Matlab image processing. The results showed that the slip rate of the YuTu-2 lunar rover traveled in the specified area of the lunar surface at locations D', A', and B', respectively is 10.45%, 12.96%, and 19.70%, and the drawbar pull is 177.03 N, 181.62 N, and 194.47 N.The ground test and inversion calculation results reveal that YuTu-2 travels well in the aforementioned region and satisfies the design requirements.

Key words

terramechanics / lunar rover / lunar soil / slip ratio / rutting

Cite this article

Download Citations
HU Zhen-yu , SHEN Yan , WANG Wei-jun , et al . Analysis of drawbar pull to CE-4 Lunar rover based on rutting image of wheel. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2474-2482 https://doi.org/10.13229/j.cnki.jdxbgxb.20211193

References

1
Cherkasov I I, Shvarev V V. Soviet investigations of the mechanics of lunar soils[J]. Soil Mechanics and Foundation Engineering, 1973, 10(4): 252-256.
2
Leonovich A K, Gromon V V, Rybakov A V, et al. Studies for lunar ground mechanical properties with the self-propelled lunokhod-l[R]. Moscow: Peredvizhnaya Laboratoriya na Luna-Lunokhod-1, 1971: 120-135.
3
Leonovich A K, Gromov V V, Rybakov A V, et al. Investigations of the mechanical properties of the lunar soil along the path of Lunokhod-1[R]. Berlin: COSPAR space research Ⅻ, 1972: 53-54.
4
Zacny K, Wilson J, Craft J, et al. Robotic Lunar Geotechnical Tool[M]. Honolulu: Earth and Space, 2010.
5
韩鸿硕, 陈杰. 21世纪国外深空探测发展计划及进展[J]. 航天器工程, 2008, 17(3): 1-22.
Han Hong-shuo, Chen Jie. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3): 1-22.
6
崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
Cui Ping-yuan, Xu Rui, Zhu Sheng-ying, et al. State of the art and developement trends of on-board autonomy technology for deep space explore[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28.
7
解杨敏, 季力, 魏祥泉, 等. 国内外行星表面巡视器自主导航技术研究[J]. 上海航天, 2021, 38(1): 61-71.
Xie Yang-min, Ji Li, Wei Xiang-quan, et al. Domestic and overseas research status on autonomous navigation technology of planetary rovers[J]. Aerospace Shanghai, 2021, 38(1): 61-71.
8
Team R. Characterization of the martian surface deposits by the Mars pathfinder rover, sojourner[J]. Science, 1997, 278(5344): 1765-1768.
9
Moore H J, Bickler D B, Crisp J A, et al. Soil-like deposits observed by Sojourner, the pathfinder rover[J]. Journal of Geophysical Research Planets, 1999, 104(E4): 8729-8746.
10
Sullivan R, Anderson R, Biesiadecki J, et al. Cohesions, friction angles, and other physical properties of martian regolith from mars exploration rover wheel trenches and wheel scuffs[J/OL]. [2021-11-02].
11
Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical properties experiments conducted by Spirit at Gusev crater[J]. Science, 2004, 305(5685): 821-824.
12
Arvidson R E, Bonitz R G, Robinson M L, et al. Results from the mars phoenix lander robotic arm experiment[J/OL]. [2021-11-03].
13
Ono M, Fuchs T J, Steffy A, et al. Risk-aware planetary rover operation: autonomous terrain classification and path planning[C]//2015 IEEE Aerospace Conference, Monoana, USA, 2015: 1-10.
14
Huang G. Visual-inertial navigation: a concise review[C]//2019 International Conference on Robotics and Automation (ICRA), Monertal, Canada, 2019: 9572-9582.
15
Iagnemma K, Kang S, Brooks C, et al. Multi-sensor terrain estimation for planetary rovers[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, NARA, Japan, 2003: No.12273618.
16
Reina G, Ojeda L, Milella A, et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 185-195.
17
Cross M, Ellery A, Qadi A. Estimating terrain parameters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics, 2013, 50(3): 165-174.
18
崔平远, 刘冰, 居鹤华. 月壤力学参数在线估计算法研究[J]. 计算机测量与控制, 2008, 16(2): 245-269.
Cui Ping-yuan, Liu Bing, Ju He-hua. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurement&Control, 2008, 16(2): 245-269.
19
李萌, 高峰, 孙鹏, 等. 月壤力学参数反求及试验验证[J]. 北京航空航天大学学报, 2011, 37(9): 1081-1805.
Li Meng, Gao Feng, Sun Peng, et al. Mechanical parameters reverse estimation of lunar soil and experimental verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1081-1805.
20
薛龙, 邹猛, 李建桥, 等. 基于轮地作用参数和PLSDA方法的月壤力学性能评估[J]. 航空学报, 2015, 36(11): 3751-3758.
Xue Long, Zou Meng, Li Jian-qiao, et al. Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3751-3758.
21
Ding L, Gao H, Deng Z, et al. Slip ratio for lugged wheel of planetary rover in deformable soil: definition and estimation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, ST.Louis, USA, 2009: 3343-3348.
22
丁亮, 高海波, 邓宗全, 等. 基于应力分布的月球车轮地相互作用地面力学模型[J]. 机械工程学报, 2009, 45(7): 49-55.
Ding Liang, Gao Hai-bo, Deng Zong-quan, et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution[J]. Journal of Mechanical Engineering, 2009, 45(7): 49-55.
23
李楠, 丁亮, 高海波, 等. 基于视觉检测技术的星球探测车车轮滑转率检测方法[C]//第三十二届中国控制会议, 西安, 2013: 3673-3679.
24
李楠, 高海波, 吕凤天, 等. 车辙图像频域分析及星球车车轮滑转率估计方法[J]. 宇航学报, 2016, 37(11): 1356-1364.
LI Nan, Gao Hai-bo, Lv Feng-tian, et al. Wheel trace imprint image frequency domain analysis and rover wheel slip ratio estimation[J]. Journal of Astronautics, 2016, 37(11): 1356-1364.
25
黄晗, 许述财, 张金换, 等. 基于轮辙非接触测量的月壤非参数化识别方法[J]. 吉林大学学报:工学版, 2019, 49(2): 366-374.
Huang Han, Xu Shu-cai, Zhang Jin-huan, et al. Non-parametric identification method for lunar regolith based on rut non-contact measurement[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 366-374.
26
黄晗, 李建桥, 陈百超, 等. 基于地面力学的筛网轮牵引通过性研究[J]. 农业机械学报, 2016, 47(): 464-470.
摘要
增刊1
Huang Han, Li Jian-qiao, Chen Bai-chao, et al. Traction trafficability of wire mesh wheel based on terramechanics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.1): 464-470.
27
陈百超, 邹猛, 党兆龙, 等. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报: 工学版, 2019, 49(6): 1836-1843.
Chen Bai-chao, Zou Meng, Dang Zhao-long, et al. Experiment on preasure-sinkage for mesh wheels of CE-3 lunar rover on lunar regolith[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
28
李建桥, 黄晗, 党兆龙, 等. 轻载荷条件下的筛网轮沉陷[J]. 吉林大学学报: 工学版, 2015, 45(1):167-173.
Li Jian-qiao, Huang Han, Dang Zhao-long, et al. Sinkage of wire mesh wheel under light load[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(1):167-173.
29
黄晗. 深空探测车辆筛网轮牵引通过性研究[D]. 长春: 吉林大学生物与农业工程学院, 2017.
Huang Han. Study on traction trafficability for wire mesh wheel of planetary exploration rovers[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2017.
30
Bekker M G. Theory of Land Locomotion[M]. Ann Arbor: University of Michigan Press, 1956.

Comments

PDF(1699 KB)

Accesses

Citation

Detail

Sections
Recommended

/