Dynamic obstacle avoidance strategy for flapping-wing micro air vehicles

ZHENG Hao, YU Li-jun, ZHI Peng-peng, WANG Zhong-lai

PDF(1934 KB)
PDF(1934 KB)
J Jilin Univ Eng Tech Ed ›› 2023, Vol. 53 ›› Issue (09) : 2732-2740. DOI: 10.13229/j.cnki.jdxbgxb.20211187

Dynamic obstacle avoidance strategy for flapping-wing micro air vehicles

Author information +
History +

Abstract

Aiming at the dynamic obstacle avoidance problem during the flying process of the Flapping-wing Micro Air Vehicle (FWMAV), a novel obstacle avoidance scheduling strategy integrating the global path planning and the locally dynamic path planning is proposed in this paper. The static comprehensive cost model is first built by considering both the performance constraints of the FWMAV and its threat constraints during the flight environment. Based on the static cost model, a time-varying collision constraint between the FWMAV and dynamic obstacles is defined and then the dynamic comprehensive cost model for the local obstacle avoidance is established. The improved ant colony algorithm is proposed for the obstacle avoidance scheduling strategy optimization. The results show that the proposed method can effectively handle the dynamic obstacle avoidance scheduling problem of the FWMAV under the known map and improve the dynamic obstacle avoidance scheduling strategy under the dynamic obstacles; meanwhile the improved ant colony algorithm can promote the efficiency of the dynamic path optimization to ensure the real-time requirement of the obstacle avoidance control of the FWMAV.

Key words

flapping-wing micro air vehicle / cost model / obstacle avoidance strategy / dynamic path planning

Cite this article

Download Citations
ZHENG Hao , YU Li-jun , ZHI Peng-peng , et al. Dynamic obstacle avoidance strategy for flapping-wing micro air vehicles. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2732-2740 https://doi.org/10.13229/j.cnki.jdxbgxb.20211187

References

1
Phan H V, Aurecianus S, Au T K L, et al. Towards long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5059-5066.
2
Zhi P, Xu Y, Chen B. Time-dependent reliability analysis of the motor hanger for EMU based on stochastic process[J]. International Journal of Structural Integrity, 2020, 11(3): 453-469.
3
Li Y H, Sheng Z, Zhi P, et al. Multi-objective optimization design of anti-rolling torsion bar based on modified NSGA-III algorithm[J]. International Journal of Structural Integrity, 2021, 12(1): 17-30.
4
霍凤财, 迟金, 黄梓健, 等. 移动机器人路径规划算法综述[J]. 吉林大学学报: 工学版, 2018, 36(6): 639-647.
Huo Feng-cai, Chi Jin, Huang Zi-jian, et al. Review of path planning for mobile robots[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 36(6): 639-647.
5
Triharminto H H, Prabuwono A S, Adji T B, et al. UAV dynamic path planning for intercepting of a moving target: a review[J]. Communications in Computer & Information Science, 2013, 376: 206-219.
6
程谦, 高嵩, 曹凯, 等. 基于PRM优化算法的移动机器人路径规划[J]. 计算机应用与软件, 2020, 37(12): 254-259.
Cheng qian, Gao song, Cao kai, et al. Path planning of mobile robot based on PRM optimization algorithm[J]. Computer Applications and Software, 2020, 37(12): 254-259.
7
Kong X D, Pan B, Cherkashin E, et al. Multi-constraint UAV fast path planning based on improved A* algorithm[J]. Journal of Physics: Conference Series, 2020, 1624(4): No.042009.
8
林韩熙, 向丹, 欧阳剑, 等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用, 2021, 57(18): 38-48.
Lin Han-xi, Xiang Dan, Ouyang Jian, et al. Review of path planning algorithms for mobile robots[J]. Computer Engineering and Applications, 2021, 57(18): 38-48.
9
戴健, 许菲, 陈琪锋. 多无人机协同搜索区域划分与路径规划[J]. 航空学报, 2020, 41(): 149-156.
摘要
增刊1
Dai Jian, Xu Fei, Chen Qi-feng. Multi-UAV cooperative search on region division and path planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup.1): 149-156.
10
李波, 杨志鹏, 贾卓然, 等. 一种无监督学习型神经网络的无人机全区域侦察路径规划[J]. 西北工业大学学报, 2021, 39(1): 77-84.
Li Bo, Yang Zhi-peng, Jia Zhuo-ran. An unsupervised learning neural network for planning UAV full-area reconnaissance path[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 77-84.
11
王巍, 梁桥. 基于单目视觉和惯性测量的飞行器自定位研究[J]. 吉林大学学报: 工学版, 2016, 34(6): 774-780.
Wang Wei, Liang Qiao. Research of ego-positioning for micro air vehicles based on monocular vision and inertial measurement[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 34(6): 774-780.
12
王晓东, 张永强, 薛红. 基于改进蚁群算法对VRP线路优化[J]. 吉林大学学报: 工学版, 2017, 35(2): 198-203.
Wang Xiao-dong, Zhang Yong-qiang, Xue Hong. Improved ant colony algorithm for VRP[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 35(2): 198-203.
13
Ho H W, Wagter C D, Remes B D W, et al. Optical-flow based self-supervised learning of obstacle appearance applied to MAV landing[J]. Robotics and Autonomous Systems, 2018, 100: 78-94.
14
Tijmons S, Croon D G C H E, Remes B D W, et al. Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV[J]. IEEE Transactions on Robotics, 2017, 33(4): 858-874.
15
Tu Z, Fei F, Zhang J, et al. Acting is seeing: navigating tight space using flapping wings[C]//2019 International Conference on Robotics and Automation, Montreal, Canada, 2019: 95-101.
16
余立均. 仿生扑翼微型飞行器路径规划研究[D]. 成都: 电子科技大学航空学院, 2021.
Yu Li-jun. Study on path planning of bio-inspired flapping-wing micro aerial vehicles[D]. Chengdu: College of Aeronautics, University of Electronic Science and Technology of China, 2021.

Comments

PDF(1934 KB)

Accesses

Citation

Detail

Sections
Recommended

/