Field turning mechanism and performance test of crawler reclaimed rice harvester

LIU Wei-jian, LUO Xi-wen, ZENG Shan, WEN Zhi-qiang, ZENG Li

PDF(1523 KB)
PDF(1523 KB)
J Jilin Univ Eng Tech Ed ›› 2023, Vol. 53 ›› Issue (09) : 2695-2705. DOI: 10.13229/j.cnki.jdxbgxb.20211178

Field turning mechanism and performance test of crawler reclaimed rice harvester

Author information +
History +

Abstract

In order to further explore the turning performance of ratooning rice harvester in the field, the relationship between turning radius and narrow track subsidence was comprehensively analyzed. The basic principle of field turning of tracked ratooning rice harvester was analyzed, and the driving force, slip rate, track subsidence and driving resistance of narrow track were calculated. The functional relationship between turning radius and narrow track subsidence was obtained by RecurDyn analysis. The simulation results show that with the increase of the turning radius, the driving wheel torque and narrow track subsidence on both sides decrease. The driving wheel torque deceased from 5835 N·m to 672.3 N·m. The peak values of driving wheel torque and narrow track subsidence were at the turning radius of 0. The reliability of the simulation results was verified by field experiments, the results show that with the increased of turning radius, the subsidence decreased from 186.24 mm to 103.57 mm. The experimental phenomena and calculation results were consistent with the RecurDyn simulation, proving the simulation results are reliable. This study can provide a reference for the turning theory research of ratooning rice harvester in the later period.

Key words

agricultural mechanization engineering / ratooning rice / narrow track / turning radius / subsidence / virtual prototype

Cite this article

Download Citations
LIU Wei-jian , LUO Xi-wen , ZENG Shan , et al . Field turning mechanism and performance test of crawler reclaimed rice harvester. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2695-2705 https://doi.org/10.13229/j.cnki.jdxbgxb.20211178

References

1
王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10): 1129-1136.
Wang Fei, Peng Shao-bing. Research progress in rice green and high-yield management practices[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1129-1136.
2
徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702-1717.
Xu Fu-xian, Xiong Hong, Zhang Lin, et al. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]. Scientia Agricultura Sinica, 2015, 48(9): 1702-1717.
3
曾山, 黄登攀, 杨文武,等. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报: 工学版, 2022, 52(8): 1943-1950.
Zeng Shan, Huang Deng-pan, Yang Wen-wu, et al. Design and test of the chassis of triangular crawler reclaiming rice harvester[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1943-1950.
4
刘伟健, 罗锡文, 曾山, 等. 基于模糊PID控制的再生稻自适应仿形割台性能试验与分析[J]. 农业工程学报, 2022, 38(10): 1-9.
Liu Wei-jian, Luo Xi-wen, Zeng Shan, et al. Performance test and analysis of the self-adaptive profiling header for ratooning rice based on fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 1-9.
5
张国忠, 张翼翔, 黄见良, 等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131-136.
Zhang Guo-zhong, Zhang Yi-xiang, Huang Jian-liang, et al. Design and performance testing a novel head spike harvester of ratoon rice[J]. Journal of Huazhong Agriculturall University, 2016, 35(1): 131-136.
6
付建伟, 张国忠, 谢干, 等. 双通道喂入式再生稻收获机研制[J]. 农业工程学报,2020, 36(3): 11-20.
Fu Jian-wei, Zhang Guo-zhong, Xie Gan, et al. Development of double-channel feeding harvester for ratoon rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 11-20.
7
雷志强, 张国忠, 彭少兵, 等. 全履带式再生稻收割机行走底盘碾压率的模拟与分析[J]. 安徽农业大学学报, 2017, 44(4): 738-743.
Lei Zhi-qiang, Zhang Guo-zhong, Peng Shao-bing, et al. Simulation and analysis of the stubble pushing rate by chassis of the completely tracked harvester for the ratoon rice[J]. Journal of Anhui Agricultural University, 2017, 44(4): 738-743.
8
Wong J Y. Theory of Ground Vehicles[M]. New york: John Wiley & Sons, 1993.
9
Wong J Y, Chiang C F. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(3): 343-355.
10
Wong J Y, Huang W. "Wheels vs. tracks"-a fundamental evaluation from the traction perspective[J]. Journal of Terramechanics, 2006, 52(43): 27-43.
11
Rahman A, Yahya A, Zohadie M. Design parameters optimization simulation of a prototype segmented rubber track vehicle for Sepang peat in Malaysia[J]. American Journal of Applied Sciences, 2005, 2(3): 655-671.
12
杨聪彬, 董明明, 顾亮, 等. 考虑履刺形状的履带板土壤推力研究[J]. 北京理工大学学报, 2015, 35(11): 22-25.
Yang Cong-bin, Dong Ming-ming, Gu Liang, et al. Research on soil shear strength considering the shape of grouse[J]. Trancsactions of Beijing Institute of Technology, 2015, 35(11): 22-25.
13
宋振家. 坚实地面上均布载荷时的履带车辆转弯理论[J]. 装甲兵技术学院教学与科研, 1980, 10(3): 1-10.
Song Zhen-jia. Steering theory of tracked vehicle with uniformpressure distribution on hard land[J]. Armored Force Technologi-cal Institute Education and Scientific Reaserch, 1980, 10(3): 1-10.
14
程军伟, 高连华, 王红岩, 等. 履带车辆转弯分析[J]. 兵工学报, 2007, 10(9): 1110-1115.
Cheng Jun-wei, Gao Lian-hua, Wang Hong-yan. Analysis on the steering of tracked vehicles[J]. Acta Armamentarii, 2007, 10(9): 1110-1115.
15
Laura E Ray. Estimation of terrain forces and parameters for rigid-wheeled vehicles[J]. IEEE Transactions on Robotics and Automation, 2009, 25(3): 717-726.
16
Pentzer J, Brennan S N, Reichard K M. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3): 455-476.
17
Martínez J L, Mandow A, Morales J, et al. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10): 867-878.
18
Lyasko Modest. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1): 21-31.
19
李西秦, 刘冰, 齐劲峰. 车轮动力半径与滑转率的研究[J]. 拖拉机与农用运输车, 2002, 28(2): 17-20.
Li Xi-qin, Liu Bing, Qi Jin-feng. Research on wheel radius and slippage[J]. Tractors & Agricultural Vehicles, 2002, 28(2): 17-20.
20
杨财, 宋健, 周艳霞. 车辆转弯时牵引力控制系统前轮滑转率算法[J]. 农业机械学报, 2008,39(8): 38-40.
Yang Cai, Song Jian, Zhou Yan-xia. Algorithm for front wheel slip ratio in the traction control system when turning[J]. Transactions of the Chinese Society of Agricultural Machinery, 2008, 39(8): 38-40.
21
Bekker M G. Introduction to Terrain-vehicle Systems[M]. Michigan: The University of Michigan Press, 1969.
22
Karafiath L L, Nowatzki E A. Soil Mechanics for Off-road Vehicle Engineering[M]. Clausthal: Transportation Technology Publications, 1978.
23
杜小强, 宁晨, 杨振华, 等. 跨式油茶果收获机履带底盘行走液压系统设计与试验[J]. 农业机械学报, 2023, 54(3): 139-147.
Du Xiao-qiang, Ning Chen, Yang Zhen-hua, et al. Design and experiment of hydraulic system for crawler chassis of straddle type camellia oleifera fruit harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 139-147.
24
宋朋, 吕金庆. 基于EDEM-RecurDyn的自激式振动深松铲耦合仿真研究[J]. 东北农业大学学报,2023,54(2):87-94.
Song Peng, Lv Jin-qing. Effects of coupling simulation of self-excited vibratory subsoiler based on EDEM-RecurDyn[J]. Journal of Northeast Agricultural University, 2023, 54(2): 87-94.
25
刘汉光,王国强,孟东阁,等. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报:工学版,2018,48(2):486-491.
Liu Han-guang, Wang Guo-qiang, Meng Dong-ge, et al. Reasonable pre-tension reaserch of crawler traveling gear of hydraulic excavator[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 486-491.

Comments

PDF(1523 KB)

Accesses

Citation

Detail

Sections
Recommended

/