
Field turning mechanism and performance test of crawler reclaimed rice harvester
LIU Wei-jian, LUO Xi-wen, ZENG Shan, WEN Zhi-qiang, ZENG Li
Field turning mechanism and performance test of crawler reclaimed rice harvester
In order to further explore the turning performance of ratooning rice harvester in the field, the relationship between turning radius and narrow track subsidence was comprehensively analyzed. The basic principle of field turning of tracked ratooning rice harvester was analyzed, and the driving force, slip rate, track subsidence and driving resistance of narrow track were calculated. The functional relationship between turning radius and narrow track subsidence was obtained by RecurDyn analysis. The simulation results show that with the increase of the turning radius, the driving wheel torque and narrow track subsidence on both sides decrease. The driving wheel torque deceased from 5835 N·m to 672.3 N·m. The peak values of driving wheel torque and narrow track subsidence were at the turning radius of 0. The reliability of the simulation results was verified by field experiments, the results show that with the increased of turning radius, the subsidence decreased from 186.24 mm to 103.57 mm. The experimental phenomena and calculation results were consistent with the RecurDyn simulation, proving the simulation results are reliable. This study can provide a reference for the turning theory research of ratooning rice harvester in the later period.
agricultural mechanization engineering / ratooning rice / narrow track / turning radius / subsidence / virtual prototype
1 |
王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10): 1129-1136.
|
2 |
徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702-1717.
|
3 |
曾山, 黄登攀, 杨文武,等. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报: 工学版, 2022, 52(8): 1943-1950.
|
4 |
刘伟健, 罗锡文, 曾山, 等. 基于模糊PID控制的再生稻自适应仿形割台性能试验与分析[J]. 农业工程学报, 2022, 38(10): 1-9.
|
5 |
张国忠, 张翼翔, 黄见良, 等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131-136.
|
6 |
付建伟, 张国忠, 谢干, 等. 双通道喂入式再生稻收获机研制[J]. 农业工程学报,2020, 36(3): 11-20.
|
7 |
雷志强, 张国忠, 彭少兵, 等. 全履带式再生稻收割机行走底盘碾压率的模拟与分析[J]. 安徽农业大学学报, 2017, 44(4): 738-743.
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
杨聪彬, 董明明, 顾亮, 等. 考虑履刺形状的履带板土壤推力研究[J]. 北京理工大学学报, 2015, 35(11): 22-25.
|
13 |
宋振家. 坚实地面上均布载荷时的履带车辆转弯理论[J]. 装甲兵技术学院教学与科研, 1980, 10(3): 1-10.
|
14 |
程军伟, 高连华, 王红岩, 等. 履带车辆转弯分析[J]. 兵工学报, 2007, 10(9): 1110-1115.
|
15 |
Laura E Ray. Estimation of terrain forces and parameters for rigid-wheeled vehicles[J]. IEEE Transactions on Robotics and Automation, 2009, 25(3): 717-726.
|
16 |
|
17 |
|
18 |
|
19 |
李西秦, 刘冰, 齐劲峰. 车轮动力半径与滑转率的研究[J]. 拖拉机与农用运输车, 2002, 28(2): 17-20.
|
20 |
杨财, 宋健, 周艳霞. 车辆转弯时牵引力控制系统前轮滑转率算法[J]. 农业机械学报, 2008,39(8): 38-40.
|
21 |
|
22 |
|
23 |
杜小强, 宁晨, 杨振华, 等. 跨式油茶果收获机履带底盘行走液压系统设计与试验[J]. 农业机械学报, 2023, 54(3): 139-147.
|
24 |
宋朋, 吕金庆. 基于EDEM-RecurDyn的自激式振动深松铲耦合仿真研究[J]. 东北农业大学学报,2023,54(2):87-94.
|
25 |
刘汉光,王国强,孟东阁,等. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报:工学版,2018,48(2):486-491.
|
/
〈 |
|
〉 |