
Dynamic graph convolutional neural network for image sentiment distribution prediction
SU Yu-ting, WANG Ji, ZHAO Wei, JING Pei-guang
Dynamic graph convolutional neural network for image sentiment distribution prediction
Aiming at the problem that there exists semantic gap between visual features and high-level emotional semantics and the subjectivity and ambiguity of emotional labels in image sentiment distribution learning, this paper proposes an Emotional Semantic Dynamic Graph Convolution Network (ESDGCN). In this framework, the Emotion Activation Module (EAM) is constructed to automatically locate the emotional semantic regions to effectively mine the content representation that fits the emotional semantics. In addition, the Semantic Dynamic Graph Convolution Network (SDGCN) is to adaptively capture the semantic relevance between labels. Finally, we adopt the parallel structure to jointly consider local semantic emotional information and label correlations. Experimental results on three open emotional datasets demonstrate the effectiveness of the proposed method.
information processing technology / visual sentiment computing / dynamic graph convolution / label distribution learning
1 |
|
2 |
|
3 |
卢洋, 王世刚, 赵文婷, 等. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J].吉林大学学报: 工学版, 2019, 49(5): 1715-1725.
|
4 |
方明, 陈文强. 结合残差网络及目标掩膜的人脸微表情识别[J].吉林大学学报: 工学版, 2021, 51(1): 303-313.
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
缪裕青, 雷庆庆, 张万桢, 等. 多视觉目标融合的图像情感分析研究[J]. 计算机应用研究, 2021, 38(4): 1250-1255.
|
28 |
盛家川, 陈雅琦, 王君, 等. 深度学习结构优化的图像情感分类[J]. 红外与激光工程, 2020, 49(11): 264-273.
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
/
〈 |
|
〉 |