
Correlation between morphological characteristics of the temporomandibular joint and three-dimensional mandi-bular growth in adolescents
Jingwen Han,Lei Wang,Shiqi Ren,Hongyu Wang,Yingyi Huang,Jiamin Li,Yan Zheng
Correlation between morphological characteristics of the temporomandibular joint and three-dimensional mandi-bular growth in adolescents
Objective The aim of the study was to explore the correlation between temporomandibular joint (TMJ) morphological characteristics and mandibular growth potential by measuring the three-dimensional growth of the mandible before and after the growth spurt in adolescents with different TMJ morphological characteristics. Methods A transverse sample of 226 adolescents with normal growth and without orthodontic treatment was selected, and the cone beam computed tomography (CBCT) image of each patient was collected. All the samples were divided into pre-growth groups and post-growth groups based on the stages of spheno-occipital synchondrosis fusion. The condylar position, condylar height-neck ratio, condylar angle, and condylar head vertical angle were measured and calculated. According to the measurement results, all the samples were divided into groups with different TMJ morphological characteristics, and each group’s mandibular three-dimensional growth was measured and analyzed. Results Regardless where the condyle was located in the joint fossa, a significant increase in mandibular length and height was observed during the growth spurt. When the condyle was not in the median position, the growth of mandibular width was statistically significant. The growth of mandibles with short and thick condyles was significant in all directions, whereas the growth of those with long and thin condyles was statistically significant in length and height but not in width. The growth of mandibles with relatively large condyle angle was statistically significant in all three-dimensional directions, whereas those with relatively small condyle angle showed statistical significance in length and height but not in width. Mandibles with relatively large condylar head vertical angle showed significant growth in the length and height but not in width, whereas mandibles with relatively small condylar head vertical angle had statistically significant length and width growth, with no statistical significance in height. Conclusion The morphological characteristics of the TMJ can be used as a reference index to predict the growth potential of the mandible. The growth volume of mandibles with different TMJ characteristics changes in various directions.
adolescent / temporomandibular joint / condyle / mandible / growth
R783.5
1 | 刘纯, 贾莹, 杨世榕, 等. 大鼠髁突软骨下骨骨微结构生长发育的特征[J]. 中国组织工程研究, 2022, 26(32): 5162-5166. |
1 | Liu C, Jia Y, Yang SR, et al. Characteristics of the growth, development and microarchitecture of condyle subchondral bone in rats[J]. Chin J Tissue Eng Res, 2022, 26(32): 5162-5166. |
2 | Saccucci M, Polimeni A, Festa F, et al. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis[J]. Head Face Med, 2012, 8: 15. |
3 | Al-Gumaei WS, Al-Attab R, Alhammadi MS, et al. Evaluation of spheno-occipital synchondrosis fusion in Chinese population using CBCT: a cross-sectio-nal study[J]. J Contemp Dent Pract, 2022, 23(1): 8-13. |
4 | 傅开元, 胡敏, 余强, 等. 颞下颌关节紊乱病锥形束CT检查规范及诊断标准的专家共识[J]. 中华口腔医学杂志, 2020, 55(9): 613-616. |
4 | Fu KY, Hu M, Yu Q, et al. Experts consensus on cone-beam CT examination specification and diagnostic criteria of temporomandibular disorders[J]. Chin J Stomatol, 2020, 55(9): 613-616. |
5 | Tun Oo L, Miyamoto JJ, Takada JI, et al. Three-dimensional characteristics of temporomandibular joint morphology and condylar movement in patients with mandibular asymmetry[J]. Prog Orthod, 2022, 23(1): 50. |
6 | Ikeda M, Miyamoto JJ, Takada JI, et al. Association between 3-dimensional mandibular morphology and condylar movement in subjects with mandibular asymmetry[J]. Am J Orthod Dentofacial Orthop, 2017, 151(2): 324-334. |
7 | Franklin D, Flavel A. Brief communication: timing of spheno-occipital closure in modern Western Australians[J]. Am J Phys Anthropol, 2014, 153(1): 132-138. |
8 | Al-Gumaei WS, Al-Attab R, Al-Tayar B, et al. Comparison of spheno-occipital synchondrosis maturation stages with three-dimensional assessment of mandibular growth[J]. BMC Oral Health, 2022, 22(1): 654. |
9 | Okamoto K, Ito J, Tokiguchi S, et al. High-resolution CT findings in the development of the sphenooccipital synchondrosis[J]. AJNR Am J Neurora-diol, 1996, 17(1): 117-120. |
10 | Pullinger AG, Solberg WK, Hollender L, et al. Relationship of mandibular condylar position to dental occlusion factors in an asymptomatic population[J]. Am J Orthod Dentofacial Orthop, 1987, 91(3): 200-206. |
11 | Berraquero R, Palacios J, Rodríguez JI. The role of the condylar cartilage in mandibular growth. A study in thanatophoric dysplasia[J]. Am J Orthod Dentofac Orthop, 1992, 102(3): 220-226. |
12 | Kajikawa A, Hirabayashi S, Harii K. An experimental study on the growth of condylar cartilage, using a new vascularized mandible heterotopic transplant model[J]. J Oral Maxillofac Surg, 2003, 61(2): 239-245. |
13 | Shen G, Darendeliler MA. The adaptive remodeling of condylar cartilage-a transition from chondrogenesis to osteogenesis[J]. J Dent Res, 2005, 84(8): 691-699. |
14 | Bjork A. Facial growth in man, studied with the aid of metallic implants[J]. Acta Odontol Scand, 1955, 13(1): 9-34. |
15 | Chen YX, Li LF, Li Y, et al. Comprehensive positional and morphological assessments of the temporomandibular joint in adolescents with skeletal Class Ⅲ malocclusion: a retrospective CBCT study[J]. BMC Oral Health, 2023, 23(1): 78. |
16 | Burke G, Major P, Glover K, et al. Correlations between condylar characteristics and facial morphology in Class Ⅱ preadolescent patients[J]. Am J Orthod Dentofacial Orthop, 1998, 114(3): 328-336. |
17 | Ma QL, Bimal P, Mei L, et al. Temporomandibular condylar morphology in diverse maxillary-mandibular skeletal patterns: a 3-dimensional cone-beam computed tomography study[J]. J Am Dent Assoc, 2018, 149(7): 589-598. |
18 | 戴微微, 王秀颖, 潘思思, 等. 替牙期功能性Ⅲ类错??髁突位置的CBCT研究[J]. 实用口腔医学杂志, 2018, 34(4): 548-551. |
18 | Dai WW, Wang XY, Pan SS, et al. The characteristic of condylar postion in the subjects with mixed dentition and Pseudo-Class Ⅲ malocclusion: a CBCT study[J]. J Pract Stomatol, 2018, 34(4): 548-551. |
19 | 胡敏, 毕长青, 周丹, 等. 安氏Ⅲ类错??正畸前后颞下颌关节形态变化的研究[J]. 现代口腔医学杂志, 2000, 14(5): 317-319. |
19 | Hu M, Bi CQ, Zhou D, et al. The study on TMJ morphological changes in patients with Angle Class Ⅲ malocclusion pretreatment and after treatment[J]. J Mod Stomatol, 2000, 14(5): 317-319. |
20 | Pullinger AG, Solberg WK, Hollender L, et al. Tomographic analysis of mandibular condyle position in diagnostic subgroups of temporomandibular disorders[J]. J Prosthet Dent, 1986, 55(6): 723-729. |
21 | Shokri A, Zarch HH, Hafezmaleki F, et al. Comparative assessment of condylar position in patients with temporomandibular disorder (TMD) and asympto-matic patients using cone-beam computed tomography[J]. Dent Med Probl, 2019, 56(1): 81-87. |
22 | Cohlmia JT, Ghosh J, Sinha PK, et al. Tomographic assessment of temporomandibular joints in patients with malocclusion[J]. Angle Orthod, 1996, 66(1): 27-35. |
23 | Paknahad M, Shahidi S. Association between condylar position and vertical skeletal craniofacial morphology: a cone beam computed tomography study[J]. Int Orthod, 2017, 15(4): 740-751. |
24 | Akahane Y, Deguchi T, Hunt NP. Morphology of the temporomandibular joint in skeletal Class Ⅲ symmetrical and asymmetrical cases: a study by cephalometric laminography[J]. J Orthod, 2001, 28(2): 119-128. |
25 | 韩婧文, 任诗琦, 刘星宇, 等. 成人不同垂直及矢状骨面型髁突特征的研究[J]. 国际口腔医学杂志, 2022, 49(2): 153-162. |
25 | Han JW, Ren SQ, Liu XY, et al. Features of condyles of adult patients with different vertical and sagittal skeletal facial types[J]. Int J Stomatol, 2022, 49(2): 153-162. |
26 | Doraczynska-Kowalik A, Nelke KH, Pawlak W, et al. Genetic factors involved in mandibular prognathism[J]. J Craniofac Surg, 2017, 28(5): e422-e431. |
27 | Moreno Uribe LM, Howe SC, Kummet C, et al. Phenotypic diversity in white adults with moderate to severe Class Ⅱ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2014, 145(3): 305-316. |
28 | Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part Ⅰ [J]. Am J Orthod Dentofacial Orthop, 1993, 103(4): 299-312. |
29 | Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part Ⅱ[J]. Am J Orthod Dentofacial Orthop, 1993, 103(5): 395-411. |
30 | Katsavrias EG, Halazonetis DJ. Condyle and fossa shape in Class Ⅱ and Class Ⅲ skeletal patterns: a morphometric tomographic study[J]. Am J Orthod Dentofacial Orthop, 2005, 128(3): 337-346. |
31 | 柳汀. 不同矢状骨面型高角错??畸形患者颞下颌关节的CBCT研究[D]. 天津: 天津医科大学, 2017. |
31 | Liu T. Morphological study on temporomandibular joint in high-angle patients with different sagittal skeletal pattern by CBCT[D]. Tianjin: Tianjin Medical University, 2017. |
32 | Lv WX, Nie Q, Gu Y. Three-dimensional analysis of mandibular characteristics in patients with skeletal Class Ⅱ malocclusion and chin deviation[J]. Am J Orthod Dentofac Orthop, 2021, 160(3): 392-400. |
33 | Liu W, Wang Y, Zhang Y, et al. Study of condylar asymmetry in Angle Class Ⅲ malocclusion with mandibular deviation[J]. J Craniofac Surg, 2015, 26(3): e264-e268. |
34 | Kim HO, Lee W, Kook YA, et al. Comparison of the condyle-fossa relationship between skeletal Class Ⅲ malocclusion patients with and without asymmetry: a retrospective three-dimensional cone-beam computed tomograpy study[J]. Korean J Orthod, 2013, 43(5): 209-217. |
35 | Obwegeser HL, Makek MS. Hemimandibular hyperplasia: hemimandibular elongation[J]. J Maxillofac Surg, 1986, 14(4): 183-208. |
36 | Santander P, Quast A, Olbrisch C, et al. Comprehensive 3D analysis of condylar morphology in adults with different skeletal patterns-a cross-sectional study[J]. Head Face Med, 2020, 16(1): 33. |
37 | Bj?rk A. Prediction of mandibular growth rotation[J]. Am J Orthod, 1969, 55(6): 585-599. |
38 | Shirley NR, Jantz RL. Spheno-occipital synchondrosis fusion in modern Americans[J]. J Forensic Sci, 2011, 56(3): 580-585. |
39 | Alhazmi A, Vargas E, Palomo JM, et al. Timing and rate of spheno-occipital synchondrosis closure and its relationship to puberty[J]. PLoS One, 2017, 12(8): e0183305. |
40 | Ferrillo M, Curci C, Roccuzzo A, et al. Reliability of cervical vertebral maturation compared to hand-wrist for skeletal maturation assessment in growing subjects: a systematic review[J]. J Back Musculos-kelet Rehabil, 2021, 34(6): 925-936. |
41 | Gabriel DB, Southard KA, Qian F, et al. Cervical vertebrae maturation method: poor reproducibility[J]. Am J Orthod Dentofacial Orthop, 2009, 136(4): 478.e1-478.e7, 478-480. |
42 | Zhao XG, Lin JX, Jiang JH, et al. Validity and re-liability of a method for assessment of cervical vertebral maturation[J]. Angle Orthod, 2012, 82(2): 229-234. |
43 | Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice[J]. J Can Dent Assoc, 2006, 72(1): 75-80. |
44 | Schlueter B, Kim KB, Oliver D, et al. Cone beam computed tomography 3D reconstruction of the mandibular condyle[J]. Angle Orthod, 2008, 78(5): 880-888. |
45 | Diwakar R, Bucci R, Kaushik A, et al. Three-dimensional assessment of temporomandibular joint morphology and facial asymmetry in individuals with different vertical skeletal growth patterns[J]. Int J Environ Res Public Health, 2023, 20(2): 1437. |
46 | Lim YS, Chung DH, Lee JW, et al. Reliability and validity of mandibular posterior vertical asymmetry index in panoramic radiography compared with cone-beam computed tomography[J]. Am J Orthod Dentofacial Orthop, 2018, 153(4): 558-567. |
47 | Al-Gumaei WS, Long H, Al-Attab R, et al. Compa-rison of three-dimensional maxillary growth across spheno-occipital synchondrosis maturation stages[J]. BMC Oral Health, 2023, 23(1): 100. |
48 | Manabe A, Ishida T, Kanda E, et al. Evaluation of maxillary and mandibular growth patterns with cephalometric analysis based on cervical vertebral maturation: a Japanese cross-sectional study[J]. PLoS One, 2022, 17(4): e0265272. |
49 | 陶珂金, 刘光俊, 冯剑颖. 颞下颌关节间隙改变与关节盘移位及程度的关系[J]. 口腔颌面修复学杂志, 2022, 23(3): 196-200. |
49 | Tao KJ, Liu GJ, Feng JY. Relationship of temporomandibular joint space to disc displacement and degree[J]. Chin J Prosthodont, 2022, 23(3): 196-200. |
/
〈 |
|
〉 |