
Application progress on finite element analysis in endocrown restoration
Youhui Cao,Xuemei Bao
Application progress on finite element analysis in endocrown restoration
The preservation of low occlusal-gingival distance, few residual dental tissues, and dead pulp molar after root canal treatment has good prospects given the updating and upgrading of adhesive materials, the rapid progress of radical pulp technology, and the rapid development of restorative production technology. The preservation of natural teeth and the continuation of residual crown function have made the repairing concept of endocrown accepted and recognized by clinicians. Stress analysis using finite element method has the advantages of being efficient, accurate, and reproducible. This paper reviews the application of finite element method in endocrown repair and discusses precautions in endocrown repair.
finite element analysis / endocrown / ceramic
R783.3
1 | 吴倩, 张彬, 李楠, 等. 三维有限元分析在口腔医学领域的应用及研究进展[J]. 世界最新医学信息文摘, 2019, 19(20): 95-96, 99. |
1 | Wu Q, Zhang B, Li N, et al. The application and research progress of three-dimensional finite element analysis in the field of stomatology[J]. World Latest Med Inf, 2019, 19(20): 95-96, 99. |
2 | 陈智, 陈瑞甜. 髓腔固位冠[J]. 口腔医学研究, 2018, 34(1): 1-5. |
2 | Chen Z, Chen RT. Endocrown[J]. J Oral Sci Res, 2018, 34(1): 1-5. |
3 | 陈惠, 岑蓉, 张成飞. 髓腔固位冠的应用现状[J]. 口腔颌面修复学杂志, 2022, 23(5): 321-326. |
3 | Chen H, Cen R, Zhang CF. Endocrown: the state of the art[J]. Chin J Prosthodont, 2022, 23(5): 321-326. |
4 | Pedrollo Lise D, van Ende A, De Munck J, et al. Biomechanical behavior of endodontically treated premolars using different preparation designs and CAD/CAM materials[J]. J Dent, 2017, 59: 54-61. |
5 | Zoidis P, Bakiri E, Polyzois G. Using modified polyetheretherketone (PEEK) as an alternative material for endocrown restorations: a short-term clinical report[J]. J Prosthet Dent, 2017, 117(3): 335-339. |
6 | Rocca GT, Daher R, Saratti CM, et al. Restoration of severely damaged endodontically treated premolars: the influence of the endo-core length on marginal integrity and fatigue resistance of lithium disi-licate CAD-CAM ceramic endocrowns[J]. J Dent, 2018, 68: 41-50. |
7 | 林捷, 林珍香, 郑志强. 髓腔固位冠不同修复材料和厚度对应力分布的影响[J]. 口腔疾病防治, 2021, 29(11): 740-745. |
7 | Lin J, Lin ZX, Zheng ZQ. Effects of the different materials and thicknesses on endocrown stress distribution[J]. J Prev Treat Stomatol Dis, 2021, 29(11): 740-745. |
8 | 高琳, 韩祥永, 徐晓明. 不同材料及不同固位深度的髓腔固位冠修复下颌第二磨牙的三维有限元分析[J]. 上海口腔医学, 2022, 31(6): 621-624. |
8 | Gao L, Han XY, Xu XM. Three-dimensional finite element analysis of three-material endocrown in the restoration of dental defects of mandibular second mo-lars[J]. Shanghai J Stomatol, 2022, 31(6): 621-624. |
9 | He JH, Zheng ZT, Wu M, et al. Influence of resto-rative material and cement on the stress distribution of endocrowns: 3D finite element analysis[J]. BMC Oral Health, 2021, 21(1): 495. |
10 | Meng QZ, Zhang YJ, Chi DL, et al. Resistance fracture of minimally prepared endocrowns made by three types of restorative materials: a 3D finite element analysis[J]. J Mater Sci Mater Med, 2021, 32(11): 137. |
11 | Tribst JPM, Dal Piva AMO, Madruga CFL, et al. Endocrown restorations: influence of dental remnant and restorative material on stress distribution[J]. Dent Mater, 2018, 34(10): 1466-1473. |
12 | Ural ?, ?a?layan E. A 3-dimensional finite element and in vitro analysis of endocrown restorations fabricated with different preparation designs and various restorative materials[J]. J Prosthet Dent, 2021, 126(4): 586.e1-586.e9. |
13 | Zheng ZT, He YY, Ruan WH, et al. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: a 3D finite element and in vitro analysis[J]. J Prosthet Dent, 2021, 125(6): 890-899. |
14 | Zheng ZT, Sun JL, Jiang LF, et al. Influence of margin design and restorative material on the stress distribution of endocrowns: a 3D finite element analysis[J]. BMC Oral Health, 2022, 22(1): 30. |
15 | Shams A, Elsherbini M, Elsherbiny AA, et al. Re-habilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: biomechanical behavior assessment through 3D finite element and in vitro analyses[J]. J Mech Behav Biomed Mater, 2022, 126: 105031. |
16 | K?seo?lu M, Furuncuo?lu F. Effect of polyetheretherketone and indirect composite resin thickness on stress distribution in maxillary premolar teeth restored with endocrown: a 3D finite element analysis[J]. J Biotechnol Strateg Heath Res, 2020, 4(3): 298-305. |
17 | 姜又升, 冯琳, 高学军. 垫底材料弹性模量对髓腔固位冠修复后上颌前磨牙应力分布的影响[J]. 北京大学学报(医学版), 2021, 53(4): 764-769. |
17 | Jiang YS, Feng L, Gao XJ. Influence of base mate-rials on stress distribution in endodontically treated maxillary premolars restored with endocrowns[J]. J Peking Univ (Heath Sci), 2021, 53(4): 764-769. |
18 | 冯娟, 郭慧慧, 申晋斌, 等. 磨牙髓室底垫底厚度对全瓷嵌体冠应力分布的影响[J]. 牙体牙髓牙周病学杂志, 2017, 27(1): 16-21. |
18 | Feng J, Guo HH, Shen JB, et al. Effects of cement thickness on the stress distribution of full-ceramic-endocrown restoration: a finite element analysis[J]. Chin J Conserv Dent, 2017, 27(1): 16-21. |
19 | Cheng X, Zhang XY, Qian WH. Influence of diffe-rent base materials and thicknesses on the fracture resistance of endocrown: a three-dimensional finite element analysis[J]. BMC Oral Health, 2022, 22(1): 363. |
20 | 张英, 熊璟, 李永强, 等. 垫底材料厚度对髓腔固位冠修复后牙体组织应力影响的三维有限元分析[J]. 中国美容医学, 2019, 28(9): 102-106. |
20 | Zhang Y, Xiong J, Li YQ, et al. Three-dimensional-finite-element comparative research of different cement thickness in endodontically treated mandi-bular molar restored with endocrown restorations[J]. Chin J Aesthetic Med, 2019, 28(9): 102-106. |
21 | 黄绮雯, 马晓晴, 唐亮. 髓腔固位冠的临床应用研究进展[J]. 临床医学研究与实践, 2022, 7(13): 185-189. |
21 | Huang QW, Ma XQ, Tang L. Research progress in clinical application of endocrown[J]. Clin Res Pract, 2022, 7(13): 185-189. |
22 | 李建宾, 陈维毅, 姚蔚. 髓腔壁缺损对下颌前磨牙髓腔固位冠修复应力的影响[J]. 太原理工大学学报, 2018, 49(1): 158-163. |
22 | Li JB, Chen WY, Yao W. Influence of cavity wall defect on stress distribution in the mandibular premolar restored with endocrown[J]. J Taiyuan Univ Technol, 2018, 49(1): 158-163. |
23 | 吴帆, 曹谅, 姜晓南, 等. 下颌第一磨牙邻面不同高度缺损髓腔固位冠的生物力学分析[J]. 口腔医学研究, 2018, 34(1): 65-68. |
23 | Wu F, Cao L, Jiang XN, et al. Biomechanical analysis of endocrown of mandibular first molar with different proximal heights[J]. J Oral Sci Res, 2018, 34(1): 65-68. |
24 | Zhang YJ, Lai HB, Meng QZ, et al. The synergetic effect of pulp chamber extension depth and occlusal thickness on stress distribution of molar endocrowns: a 3-dimensional finite element analysis[J]. J Mater Sci Mater Med, 2022, 33(7): 56. |
25 | 林珍香, 潘在兴, 叶起清, 等. 二硅酸锂陶瓷和氧化锆髓腔固位冠的![]() |
25 | Lin ZX, Pan ZX, Ye QQ, et al. Effect of occlusal thickness design on the fracture resistance of endocrowns restored with lithium disilicate ceramic and zirconia[J]. West China J Stomatol, 2020, 38(6): 647-651. |
26 | Dartora NR, de Conto Ferreira MB, Moris ICM, et al. Effect of intracoronal depth of teeth restored with endocrowns on fracture resistance: in vitro and 3-dimensional finite element analysis[J]. J Endod, 2018, 44(7): 1179-1185. |
27 | 康婷, 石思琼, 赵威, 等. 上颌第一前磨牙舌尖斜形折裂不同修复设计的有限元分析[J]. 口腔医学研究, 2019, 35(10): 953-956. |
27 | Kang T, Shi SQ, Zhao W, et al. Finite element analysis of different designs for maxillary first premolars with lingual cusp oblique defect[J]. J Oral Sci Res, 2019, 35(10): 953-956. |
28 | Zhu JX, Wang DM, Rong QG, et al. Effect of central retainer shape and abduction angle during preparation of teeth on dentin and cement layer stress distributions in endocrown-restored mandibular molars[J]. Dent Mater J, 2020, 39(3): 464-470. |
29 | Tribst JPM, Giudice RL, dos Santos AFC, et al. Lithium disilicate ceramic endocrown biomechanical response according to different pulp chamber extension angles and filling materials[J]. Materials, 2021, 14(5): 1307. |
30 | 粟猛, 屈直. 不同制备形态对短冠磨牙髓腔固位冠抗折性影响的研究[J]. 口腔医学研究, 2021, 37(2): 118-121. |
30 | Su M, Qu Z. Effect of preparation designs on fracture strengths of endocrown of maxillary short coronal molars[J]. J Oral Sci Res, 2021, 37(2): 118-121. |
31 | Gong QM, Huang L, Luo JP, et al. The practicability of different preparation of mandibular molar restored by modified endocrown with intracanal extension: computational analysis using finite element models[J]. Comput Methods Programs Biomed, 2022, 226: 107178. |
32 | Gulec L, Ulusoy N. Effect of endocrown restorations with different CAD/CAM materials: 3D finite element and weibull analyses[J]. Biomed Res Int, 2017, 2017: 5638683. |
33 | Aldesoki M, Bourauel C, Morsi T, et al. Biomecha-nical behavior of endodontically treated premolars restored with different endocrown designs: finite ele-ment study[J]. J Mech Behav Biomed Mater, 2022, 133: 105309. |
34 | 王慧媛, 付强, 张春光, 等. 边缘形式对大面积缺损第一磨牙髓腔固位冠应力分布的影响[J]. 口腔医学研究, 2015, 31(11): 1121-1124. |
34 | Wang HY, Fu Q, Zhang CG, et al. Research on the biomechanical effects of restoration method on first molar with significant loss of coronal structure[J]. J Oral Sci Res, 2015, 31(11): 1121-1124. |
35 | 郭靖, 王潇宇, 李学盛, 等. 不同边缘设计的髓腔固位冠修复下颌前磨牙的应力分析[J]. 南方医科大学学报, 2016, 36(2): 200-204. |
35 | Guo J, Wang XY, Li XS, et al. Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown[J]. J South Med Univ, 2016, 36(2): 200-204. |
/
〈 |
|
〉 |