
Research progress on chitosan in periodontal disease treatment
Xingyue Wen, Junyu Zhao, Chongjun Zhao, Guixin Wang, Ruijie Huang
Research progress on chitosan in periodontal disease treatment
Chitosan is the only naturally occurring cationic polysaccharide and has gradually become a focus of attention in tissue engineering due to its good biocompatibility; biodegradability; antibacterial, anti-inflammatory, anticancer, and tissue repair activity; and great drug delivery capacity. Periodontal disease, as an inflammatory and destructive di-sease, has a high prevalence and significant impact on oral health and even systemic health. In this review, we summarize the role of chitosan in periodontal therapy, including its regenerative scaffolding; drug delivery; and antibacterial, anti-inflammatory, and angiogenesis-promoting effects. We then analyze current issues and point out possible future directions for its development, aiming to provide solutions to problems encountered in periodontal disease treatment.
periodontal disease / chitosan / multidirectional scaffold / drug delivery / antibacterial properties
R781.4
1 | Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis[J]. Nat Rev Microbiol, 2010, 8(7): 481-490. |
2 | Kinane DF, Stathopoulou PG, Papapanou PN. Pe-riodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038. |
3 | Trindade D, Carvalho R, Machado V, et al. Prevalence of periodontitis in dentate people between 2011 and 2020: a systematic review and meta-analysis of epidemiological studies[J]. J Clin Periodontol, 2023, 50(5): 604-626. |
4 | Larsson L, Decker AM, Nibali L, et al. Regenerative medicine for periodontal and peri-implant di-seases[J]. J Dent Res, 2016, 95(3): 255-266. |
5 | Kou SG, Peters LM, Mucalo MR. Chitosan: a review of sources and preparation methods[J]. Int J Biol Macromol, 2021, 169: 85-94. |
6 | Lagarto A, Merino N, Valdes O, et al. Safety evaluation of chitosan and chitosan acid salts from Panurilus Argus lobster[J]. Int J Biol Macromol, 2015, 72: 1343-1350. |
7 | Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry[J]. Int J Biol Macromol, 2020, 162: 956-974. |
8 | Aguilar A, Zein N, Harmouch E, et al. Application of chitosan in bone and dental engineering[J]. Molecules, 2019, 24(16): 3009. |
9 | Baskar D, Balu R, Sampath Kumar TS. Mineralization of pristine chitosan film through biomimetic process[J]. Int J Biol Macromol, 2011, 49(3): 385-389. |
10 | Gao HY, Wu N, Wang NN, et al. Chitosan-based therapeutic systems and their potentials in treatment of oral diseases[J]. Int J Biol Macromol, 2022, 222(Pt B): 3178-3194. |
11 | Zhang YF, Dou XY, Zhang LY, et al. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration[J]. Bioact Mater, 2022, 11: 130-139. |
12 | Sacco P, Furlani F, de Marzo G, et al. Concepts for developing physical gels of chitosan and of chitosan derivatives[J]. Gels, 2018, 4(3): 67. |
13 | Cosco D, Failla P, Costa N, et al. Rutin-loaded chitosan microspheres: characterization and evaluation of the anti-inflammatory activity[J]. Carbohydr Polym, 2016, 152: 583-591. |
14 | Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, et al. Chitosan films and scaffolds for regenerative medicine applications: a review[J]. Carbohydr Polym, 2021, 273: 118631. |
15 | Vaquette C, Pilipchuk SP, Bartold PM, et al. Tissue engineered constructs for periodontal regeneration: current status and future perspectives[J]. Adv Healthc Mater, 2018, 7(21): e1800457. |
16 | Liang YX, Luan XH, Liu XH. Recent advances in periodontal regeneration: a biomaterial perspective[J]. Bioact Mater, 2020, 5(2): 297-308. |
17 | Woo HN, Cho YJ, Tarafder S, et al. The recent advances in scaffolds for integrated periodontal rege-neration[J]. Bioact Mater, 2021, 6(10): 3328-3342. |
18 | Islam MM, Shahruzzaman M, Biswas S, et al. Chitosan based bioactive materials in tissue engineering applications-a review[J]. Bioact Mater, 2020, 5(1): 164-183. |
19 | Niu XL, Wang LF, Xu MJ, et al. Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered mem-branes for guided bone regeneration[J]. Carbohydr Polym, 2021, 260: 117769. |
20 | Abdelaziz D, Hefnawy A, Al-Wakeel E, et al. New biodegradable nanoparticles-in-nanofibers based me-mbranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity[J]. J Adv Res, 2021, 28: 51-62. |
21 | Zhang L, Dong YS, Zhang N, et al. Potentials of sandwich-like chitosan/polycaprolactone/gelatin sca-ffolds for guided tissue regeneration membrane[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110618. |
22 | Chichiricco PM, Riva R, Thomassin JM, et al. In situ photochemical crosslinking of hydrogel membrane for Guided Tissue Regeneration[J]. Dent Mater, 2018, 34(12): 1769-1782. |
23 | Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011, 7(1): 216-224. |
24 | Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112298. |
25 | Varoni EM, Vijayakumar S, Canciani E, et al. Chitosan-based trilayer scaffold for multitissue periodontal regeneration[J]. J Dent Res, 2018, 97(3): 303-311. |
26 | Shah AT, Zahid S, Ikram F, et al. Tri-layered functionally graded membrane for potential application in periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109812. |
27 | Lauritano D, Limongelli L, Moreo G, et al. Nanomaterials for periodontal tissue engineering: chitosan-based scaffolds. A systematic review[J]. Nanomaterials, 2020, 10(4): 605. |
28 | Kim Y, Zharkinbekov Z, Raziyeva K, et al. Chitosan-based biomaterials for tissue regeneration[J]. Pharmaceutics, 2023, 15(3): 807. |
29 | Hsu SH, Huang GS, Lin SY, et al. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes[J]. Tissue Eng Part A, 2012, 18(1/2): 67-79. |
30 | Wang ZS, Wu GS, Yang ZJ, et al. Chitosan/hya-luronic acid/MicroRNA-21 nanoparticle-coated s-mooth titanium surfaces promote the functionality of human gingival fibroblasts[J]. Int J Nanomedicine, 2022, 17: 3793-3807. |
31 | de Sousa Victor R, Marcelo da Cunha Santos A, Via-na de Sousa B, et al. A review on chitosan’s uses as biomaterial: tissue engineering, drug delivery systems and cancer treatment[J]. Materials, 2020, 13(21): 4995. |
32 | Bharathi R, Ganesh SS, Harini G, et al. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering[J]. Int J Biol Macromol, 2022, 222(Pt A): 132-153. |
33 | Gentile P, Nandagiri VK, Daly J, et al. Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 249-257. |
34 | Gull N, Khan SM, Zahid Butt MT, et al. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study[J]. RSC Adv, 2019, 9(53): 31078-31091. |
35 | Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1349-1362. |
36 | Saber-Samandari S, Saber-Samandari S. Biocompa-tible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 721-732. |
37 | Song YH, Li YH, Xu QE, et al. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook[J]. Int J Nanomedicine, 2017, 12: 87-110. |
38 | Zhao C, Qazvini NT, Sadati M, et al. A pH-triggered, self-assembled, and bioprintable hybrid hydrogel scaffold for mesenchymal stem cell based bone tissue engineering[J]. ACS Appl Mater Interfaces, 2019, 11(9): 8749-8762. |
39 | ?zdo?an AI, ?larslan YD, K?semehmeto?lu K, et al. In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis[J]. Int J Pharm, 2018, 550(1/2): 470-476. |
40 | Chang PC, Tai WC, Luo HT, et al. Core-shell poly-(D, l-lactide-co-glycolide)-chitosan nanospheres wi-th simvastatin-doxycycline for periodontal and osseous repair[J]. Int J Biol Macromol, 2020, 158: 627-635. |
41 | Xu XW, Gu ZY, Chen X, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and ery-thropoietin[J]. Acta Biomater, 2019, 86: 235-246. |
42 | Arancibia R, Maturana C, Silva D, et al. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts[J]. J Dent Res, 2013, 92(8): 740-745. |
43 | Divakar DD, Jastaniyah NT, Altamimi HG, et al. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver na-noparticle against dental implant pathogens[J]. Int J Biol Macromol, 2018, 108: 790-797. |
44 | Zupan?i? ?, Casula L, Rijavec T, et al. Sustained release of antimicrobials from double-layer nanofiber mats for local treatment of periodontal disease, eva-luated using a new micro flow-through apparatus[J]. J Control Release, 2019, 316: 223-235. |
45 | Peng PC, Hsieh CM, Chen CP, et al. Assessment of photodynamic inactivation against periodontal bacteria mediated by a chitosan hydrogel in a 3D gingival model[J]. Int J Mol Sci, 2016, 17(11): 1821. |
46 | Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan[J]. J Appl Polym Sci, 2001, 79(7): 1324-1335. |
47 | Pyo-Jam P, Je JY, Byun HG, et al. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights[J]. J Microbiol Biotechnol, 2004, 14(2): 317-323. |
48 | Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria[J]. Int J Food Microbiol, 2001, 71(2/3): 235-244. |
49 | Sun ZM, Shi CG, Wang XY, et al. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan[J]. Carbohydr Polym, 2017, 155: 321-328. |
50 | Benhabiles MS, Salah R, Lounici H, et al. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste[J]. Food Hydrocoll, 2012, 29(1): 48-56. |
51 | Ouyang LP, Chen BH, Liu XD, et al. Puerarin@Chitosan composite for infected bone repair through mimicking the bio-functions of antimicrobial peptides[J]. Bioact Mater, 2023, 21: 520-530. |
52 | Vasconcelos DP, Fonseca AC, Costa M, et al. Macrophage polarization following chitosan implantation[J]. Biomaterials, 2013, 34(38): 9952-9959. |
53 | Davydova VN, Kalitnik AA, Markov PA, et al. Cytokine-inducing and anti-inflammatory activity of chitosan and its low-molecular derivative[J]. Prikl Biokhim Mikrobiol, 2016, 52(5): 460-466. |
54 | Ji QX, Deng J, Yu XB, et al. Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan[J]. Carbohydr Polym, 2013, 92(1): 824-829. |
55 | Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a ma-crophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. |
56 | Baru O, Nutu A, Braicu C, et al. Angiogenesis in regenerative dentistry: are we far enough for therapy[J]. Int J Mol Sci, 2021, 22(2): 929. |
57 | Li JE, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix[J]. Microscopy Res Technique, 2003, 60(1): 107-114. |
58 | Divband B, Pouya B, Hassanpour M, et al. Towards induction of angiogenesis in dental pulp stem cells using chitosan-based hydrogels releasing basic fibroblast growth factor[J]. Biomed Res Int, 2022, 2022: 5401461. |
59 | Malik MH, Shahzadi L, Batool R, et al. Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxya-patite hydrogels enhance angiogenesis in in-ovo experiments[J]. Int J Biol Macromol, 2020, 145: 1162-1170. |
60 | Ojeda JE, Cardenas G, Klassen R, et al. Nitric oxide synthase activity and angiogenesis measured by expression of CD34 in burns treated with chitosan films[J]. Wounds, 2011, 23(5): 135-143. |
61 | Zahid AA, Ahmed R, Raza Ur Rehman S, et al. Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo mo-del[J]. Int J Biol Macromol, 2019, 136: 901-910. |
62 | Yu YM, Chen R, Sun Y, et al. Manipulation of VEGF-induced angiogenesis by 2-N, 6-O-sulfated chitosan[J]. Acta Biomater, 2018, 71: 510-521. |
63 | Mohandas A, Anisha BS, Chennazhi KP, et al. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds[J]. Colloids Surf B Biointerfaces, 2015, 127: 105-113. |
64 | Soriente A, Amodio SP, Fasolino I, et al. Chitosan/PEGDA based scaffolds as bioinspired materials to control in vitro angiogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111420. |
65 | Deng C, Zhang PC, Vulesevic B, et al. A collagen-chitosan hydrogel for endothelial differentiation and angiogenesis[J]. Tissue Eng Part A, 2010, 16(10): 3099-3109. |
66 | Jiang ZW, Han BQ, Li H, et al. Carboxymethyl chitosan represses tumor angiogenesis in vitro and in vivo [J]. Carbohydr Polym, 2015, 129: 1-8. |
67 | Pihlstrom BL, Michalowicz BS, Johnson NW. Pe-riodontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820. |
68 | Liu JY, Xiao Y, Wang XY, et al. Glucose-sensitive delivery of metronidazole by using a photo-crosslinked chitosan hydrogel film to inhibit Porphyromonas gingivalis proliferation[J]. Int J Biol Macromol, 2019, 122: 19-28. |
69 | Hao YP, Zhao WW, Zhang H, et al. Carboxymethyl chitosan-based hydrogels containing fibroblast grow-th factors for triggering diabetic wound healing[J]. Carbohydr Polym, 2022, 287: 119336. |
70 | Khaliq T, Sohail M, Minhas MU, et al. Self-crosslinked chitosan/κ-carrageenan-based biomimetic me-mbranes to combat diabetic burn wound infections[J]. Int J Biol Macromol, 2022, 197: 157-168. |
/
〈 |
|
〉 |