医学人工智能的技术发展和场景应用

吴敏敏, 王鑫钰, 王伟炳

PDF(1138 KB)
PDF(1138 KB)
复旦学报(医学版) ›› 2025, Vol. 52 ›› Issue (03) : 470-474. DOI: 10.3969/j.issn.1672-8467.2025.03.021
讲座

医学人工智能的技术发展和场景应用

作者信息 +

Technological development and scenario applications of medical artificial intelligence

Author information +
History +

摘要

自1956年人工智能(artificial intelligence,AI)概念提出以来,医学始终是其核心应用领域之一。当前,AI技术已贯穿诊疗全流程,并延伸至药物研发、手术机器人及临床试验优化等创新场景,形成以数据治理、算法创新、场景应用为支柱的技术体系。多模态数据融合整合影像、病历、基因等异构数据,联邦学习实现跨机构隐私保护共享;深度学习在影像诊断中实现90%以上的肺结节检测灵敏度;生成式AI加速药物分子设计。核心应用覆盖四大领域:AI在乳腺癌、糖尿病视网膜病变筛查中准确率超专业医师;机器人技术缩短住院时间并提高脊柱螺钉植入精度;AI缩短药物靶点的发现周期;机器学习将受试者提升筛选效率,并实现实时数据监测。AI在医疗领域的应用首先受到数据质量和算法偏差的制约,AI模型的“黑箱”特性和责任归属模糊是临床落地的核心障碍。本文通过分析关键技术突破和典型案例,探讨了AI在医学中的应用场景及其面临的挑战,旨在为医疗智能化的未来发展提供参考。

Abstract

Since the concept of artificial intelligence (AI) was proposed in 1956, medicine has been one of its core application fields. At present, AI technology has run through the whole diagnosis and treatment process, and has been extended to innovative scenarios such as drug research and development, surgical robots, and clinical trial optimization. Scenario application is the backbone of the technical system. Multimodal data fusion integrates heterogeneous data such as images, medical records, and genes, and federated learning realizes cross-institutional privacy protection and sharing. Deep learning achieved more than 90% sensitivity in imaging diagnosis for lung nodule detection, while generative AI accelerates drug molecule design. The core applications cover four major areas field: AI is more accurate than professional doctors in breast cancer and diabetic retinopathy screening; robotics shortens hospital stays and improves spinal screw placement accuracy; AI shortens the discovery cycle of drug targets; machine learning improves the efficiency of subject screening and enables real-time data monitoring. The application of AI in the medical field is first constrained by data quality and algorithm bias, and the “black box” characteristics of AI models and the ambiguity of responsibility attribution are the core obstacles to clinical implementation. This paper analyzes key technological breakthroughs and typical cases, discusses the application scenarios and challenges of AI in medicine, and aims to provide a reference for the future development of medical intelligence.

关键词

医学人工智能 / 药物研发 / 手术机器人 / 临床试验优化 / 多模态大模型

Key words

medical artificial intelligence / drug research and development / surgical robots / clinical trial optimization / multimodal large models

中图分类号

R319 / TP18

引用本文

导出引用
吴敏敏 , 王鑫钰 , 王伟炳. 医学人工智能的技术发展和场景应用. 复旦学报(医学版). 2025, 52(03): 470-474 https://doi.org/10.3969/j.issn.1672-8467.2025.03.021
WU Min-min, WANG Xin-yu, WANG Wei-bing. Technological development and scenario applications of medical artificial intelligence[J]. Fudan University Journal of Medical Sciences. 2025, 52(03): 470-474 https://doi.org/10.3969/j.issn.1672-8467.2025.03.021

参考文献

1
CROCEROSSA F CARBONARA U CANTIELLO F,et al.Robot-assisted radical nephrectomy:a systematic review and meta-analysis of comparative studies[J].Eur Urol202180(4):428-439.
2
HUANG M TETREAULT TA VAISHNAV A,et al.The current state of navigation in robotic spine surgery[J].Ann Transl Med20219(1):86.
3
LI J YANG X CHU G,et al.Application of improved robot-assisted laparoscopic telesurgery with 5G technology in urology[J].Eur Urol202383(1):41-44.
4
GARG V.Generative AI for graph-based drug design:recent advances and the way forward[J].Curr Opin Struct Biol202484:102769.
5
ESCALÉ-BESA A VIDAL-ALABALL J MIRÓ CATALINA Q,et al.The use of artificial intelligence for skin disease diagnosis in primary care settings:a systematic review[J].Healthcare202412(12):1192.
6
DIAO XL WANG X QIN JK,et al.A review of the application of artificial intelligence in orthopedic diseases[J].Comput Mater Cont202478(2):2617-2665.
7
CHU WT REZA SMS ANIBAL JT,et al.Artificial intelligence and infectious disease imaging[J].J Infect Dis2023228():S322-S336.
Suppl 4
8
GANDHI Z GURRAM P AMGAI B,et al.Artificial intelligence and lung cancer:impact on improving patient outcomes[J].Cancers202315(21):5236.
9
VISAN AI NEGUT I.Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery[J].Life202414(2):233.
10
JAYATUNGA M KP AYERS M BRUENS L,et al.How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons[J].Drug Discov Today202429(6):104009.
11
CELI LA CELLINI J CHARPIGNON ML,et al.Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review[J].PLOS Digit Health20221(3):e0000022.
12
NAZER LH ZATARAH R WALDRIP S,et al.Bias in artificial intelligence algorithms and recommendations for mitigation[J].PLOS Digit Health20232(6):e278.

作者贡献声明

吴敏敏 项目设计,论文撰写。王鑫钰 图表制作,论文撰写。王伟炳 项目设计,研究指导,论文修订,经费支持。

基金

上海市市级科技重大专项(ZD2021CY001)
上海市加强公共卫生体系建设三年行动计划(2023—2025年)(GWVI-11.1-03)
Shanghai Municipal Three-year Action Plan for Strengthening Public Health System Construction (2023‒2025)(GWVI-11.1-03)

评论

PDF(1138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/