秘鲁铜元素地球化学空间分布及对成矿远景区的预测

胡庆海, 王学求, 张必敏, 迟清华, 王强, 孙彬彬, 周建, 王玮, Igor ESPINOZA VERDE, Alex AGURTO CORNEJO, Joel OTERO AGUILAR, 盘炜, 刘汉粮, 田密, 吴慧

PDF(8723 KB)
PDF(8723 KB)
地学前缘 ›› 2025, Vol. 32 ›› Issue (1) : 205-218. DOI: 10.13745/j.esf.yx.2024.10.37
环太平洋成矿带战略资源地球化学调查评价

秘鲁铜元素地球化学空间分布及对成矿远景区的预测

作者信息 +

Geochemical spatial distribution of copper and mineral prospectivity prediction in Peru

Author information +
History +

摘要

秘鲁位于南美洲西岸,作为安第斯成矿带的重要组成部分,矿产资源丰富,铜矿资源储量和产量位居世界第二。本文首次对秘鲁开展全国范围全球尺度地球化学调查工作,获得汇水域沉积物样品共416件,秘鲁全境铜元素含量为2.38~495 μg/g,背景值(中位数)为24.0 μg/g。秘鲁全境、沿海带、安第斯山区和亚马孙平原的表层(深层)汇水域沉积物中铜元素平均含量依次为31.4(31.6)、45.6(32.2)、47.5(48.2)和21.3 μg/g(24.9 μg/g)。地球化学图显示,秘鲁铜空间分布整体呈现出西高东低的趋势,西部沿海带和中部安第斯山区含量较高,东部亚马孙平原区含量较低的特征。本文选用75%累积频率作为异常下限值,圈定出5处铜地球化学异常,其中两处达到地球化学巨省规模,两处达到地球化学域规模。同时,讨论铜地球化学异常的来源和影响因素,解析与之对应的矿产资源响应,秘鲁良好的构造演化环境,为大型、超大型铜矿床的形成提供有利条件。太平洋纳斯卡板块向南美大陆不断俯冲变换,致使洋壳发生部分熔融,产生强烈而广泛的中酸性岩浆活动,且岩浆中铜含量大规模富集,局部地区在特定环境下富集成矿。这一构造运动导致铜元素在秘鲁空间分布上呈现出多个地球化学块体,可能也是铜地球化学异常形成的原因之一。这些巨大的地球化学块体发现可用于未来寻找铜矿集区或大型、超大型铜矿床,圈定找矿远景区,并可以降低找矿风险,提高找矿效率,缩短找矿周期。研究圈定的地球化学找矿远景区,可为秘鲁铜矿勘查开发利用提供基础资料和数据。

Abstract

Peru, as an important part of the Andean metallogenic belt, is located on the west coast of South America. It is rich in mineral resources, and its copper reserves and copper production ranks second in the world. This paper carried out a global scale geochemical mapping project in Peru for the first time, and obtained a total of 416 catchment sediment samples. Copper contents in catchment sediments in Peru ranged from 2.38 to 495 μg/g, with a background (median) value of 24.0 μg/g. The average copper content in the surface (deep) catchment sediments of the whole Peruvian region and of the coastal zone, the Andes mountains and the Amazon plain were 31.4 (31.6), 45.6 (32.2), 47.5 (48.2) and 21.3 (24.9) μg/g (μg/g), respectively. The geochemical map showed that the spatial distribution of copper in Peru as a whole had a trend of high in the west and low in the east, with higher copper content in the western coastal zone and the central Andes mountains and lower copper content in the eastern Amazon plain. Using a cumulative frequency of 75% as the lower limit of anomaly, five copper geochemical anomalies were delineated, two of which reached the scale of geochemical giant province, and another two of geochemical province. The paper also discusses the source and influencing factors of copper geochemical anomaly and the impact on mineral resources. The favorable tectonic evolution environment of Peru provide favorable conditions for the formation of large and super-large copper deposits. The continuous subduction and transformation of the Nazca plate of the Pacific Ocean to the South American continent led to partial melting of the oceanic crust, resulting in strong and extensive medium-acidic magmatic activity. In addition, the copper content in the magma is enriched on a large scale, and the local area is enriched and metallogenic under specific environment. This tectonic movement led to several geochemical blocks in the spatial distribution of Cu elements in Peru, which may also be one of the reasons for the formation of Cu geochemical anomalies. In future studies these geochemical blocks can be used to search for copper ore concentration areas or large and super-large copper deposits, delineate prospective areas, reduce prospecting risks, improve the prospecting efficiency and shorten the prospecting period. Geochemical prospecting conducted in the research area can provide basic information and data for the exploration, development and utilization of copper deposits in Peru.

关键词

秘鲁 / / 汇水域沉积物 / 地球化学填图 / 成矿远景区

Key words

Peru / copper / catchment sediment / geochemical mapping / metallogenic prospective area

中图分类号

P595;P632

引用本文

导出引用
胡庆海 , 王学求 , 张必敏 , . 秘鲁铜元素地球化学空间分布及对成矿远景区的预测. 地学前缘. 2025, 32(1): 205-218 https://doi.org/10.13745/j.esf.yx.2024.10.37
Qinghai HU, Xueqiu WANG, Bimin ZHANG, et al. Geochemical spatial distribution of copper and mineral prospectivity prediction in Peru[J]. Earth Science Frontiers. 2025, 32(1): 205-218 https://doi.org/10.13745/j.esf.yx.2024.10.37

参考文献

[1]
鞠建华, 张照志, 潘昭帅, 等. 我国战略性新兴产业矿产厘定与 “十四五” 需求分析[J]. 中国矿业, 2022, 31(9): 1-11.
[2]
BAUER D J, NGUYEN R T, SMITH B J. Criticalmaterials assessment 2023[R]. Washington DC: U.S. Department of Energy, 2023.
[3]
COULOMB R, DIETZ S, GODUNOVA M, et al. Criticalminerals today and in 2030:an analysis for OECD countries - environment working papers No. 91[R]. Paris: OECD, 2015.
[4]
王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550-1559.
[5]
RODRÍGUEZ MORANTE I, ACOSTA ALE J G, TUMIALÁN DE LA CRUZ P H, et al. Compendio minería y yacimientos minerales del Perú[R]. Lima: INGEMMET, 2023.
[6]
BUSTAMANTE ROMANÍ A, CARDOZO GOYTIZOLO L M, ACOSTA ALE J G. Overview of the main Peruvian copper porphyry belts and deposits[C]// Material presentado en el XVII Congreso Peruano de Geología “Alberto Benavides de la Quintana”. Lima: Sociedad Geológica del Perú 2014.
[7]
刘君安, 郭维民, 徐鸣, 等. 秘鲁阿雷基帕省阿蒂科地区水系沉积物地球化学特征及找矿远景预测[J]. 地质通报, 2017, 36(12): 2264-2274.
[8]
李子鹏, 胡尚军, 王欢. 基于地质物化探特征的找矿前景分析: 以秘鲁PUCAPUCA铜矿为例[J]. 资源环境与工程, 2020, 34(3): 351-357, 417.
[9]
李子鹏, 王欢, 胡中岳. 秘鲁BAYA铜矿地质特征及成因浅析[J]. 资源环境与工程, 2020, 34(2): 210-218.
[10]
DARNLEY A G, BJÖRKLUND A, BØLVIKEN B, et al. Aglobal geochemical database for environmental and resource management. recommendations for international geochemical mapping, final report of IGCP project 259[R]. Paris: UNESCO Publishing, 1995.
[11]
WANG X Q, ZHANG B M, NIE L S, et al. Mapping chemical earth program: progress and challenge[J]. Journal of Geochemical Exploration, 2020, 217: 106578.
[12]
张必敏, 王学求, 周建, 等. 国际地球化学填图走向新阶段[J]. 物探化探计算技术, 2022, 44(6): 797-804.
[13]
王学求, 徐善法, 迟清华, 等. 华南陆块成矿元素巨量聚集与分布[J]. 地球化学, 2013, 42(3): 229-241.
[14]
谢学锦. 勘查地球化学: 发展史·现状·展望[J]. 地质与勘探, 2002, 38(6): 1-9.
[15]
成秋明, 张生元, 左仁广, 等. 多重分形滤波方法和地球化学信息提取技术研究与进展[J]. 地学前缘, 2009, 16(2): 185-198.
[16]
刘雪敏, 王学求, 徐善法, 等. 华南陆块铜的地球化学块体与成矿省的关系[J]. 地学前缘, 2012, 19(3): 59-69.
[17]
徐善法, 王玮. 长江中下游地区不同尺度铜地球化学异常的意义与大型矿床预测[J]. 地学前缘, 2012, 19(3): 84-92.
[18]
聂兰仕, 刘汉粮, 李江鹏, 等. 中蒙边界地区铜区域地球化学分布及远景区预测[J]. 地球学报, 2020, 41(6): 851-860.
[19]
王玮, 王学求, 张必敏, 等. 老挝铜地球化学背景与异常特征[J]. 地球学报, 2020, 41(6): 861-867.
[20]
向文帅, 白洋, 姜军胜, 等. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[21]
商务部国际贸易经济合作研究院, 中国驻秘鲁大使馆经济商务处, 商务部对外投资和经济合作司. 对外投资合作国别(地区)指南——秘鲁[R]. 北京: 中华人民共和国商务部, 2022.
[22]
DALMAYRAC B, LANCELOT J R, LEYRELOUP A. Two-billion-year granulites in the late Precambrian metamorphic basement along the southern Peruvian coast[J]. Science, 1977, 198(4312): 49-51.
[23]
INGEMMET. Mapa geológico del Perú[R]. Lima: INGEMMET, 2023.
[24]
林腾. 基于GIS的秘鲁中南部地区矿产资源预测研究[D]. 长沙: 中南大学, 2011.
[25]
朱小三, 卢民杰, 程文景, 等. 安第斯与冈底斯成矿带斑岩铜矿床矿物学和成矿斑岩地球化学特征对比[J]. 地质通报, 2017, 36(12): 2143-2153.
[26]
INGEMMET, DRME. Metallogenic map of Peru: mining operations and projects[R]. Lima: INGEMMET and DRME, 2022.
[27]
胡庆海, 王学求, 韩志轩, 等. 京津冀地区永清县土壤重金属地球化学特征及绿色食品产地的土壤质量评价[J]. 现代地质, 2023, 37(3): 778-789.
[28]
WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39.
[29]
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42.
[30]
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.
[31]
KÜRZLH. Exploratory data analysis: recent advances for the interpretation of geochemical data[J]. Journal of Geochemical Exploration, 1988, 30(1/2/3): 309-322.
[32]
史长义. 勘查数据分析(EDA)技术的应用[J]. 地质与勘探, 1993, 29(11): 52-58.
[33]
谢学锦, 刘大文, 向运川, 等. 地球化学块体: 概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233.
[34]
刘汉粮, 聂兰仕, DAVAA S, 等. 中蒙边界地区战略性矿产资源锂区域地球化学分布及控制因素[J]. 地球科学, 2022, 47(8): 2795-2808.
[35]
HAWKES H E, WEBB J S. Geochemistry in mineral exploration[M]. New York: Harper & Row, 1962.
[36]
CHEN N, MAO J W, ZHANG Z C, et al. Arc magmatic evolution and porphyry copper deposit formation under compressional regime: a geochemical perspective from the Toquepala arc in southern Peru[J]. Earth-Science Reviews, 2023, 240: 104383.
[37]
CHEN N, PRATT W, MAO J W, et al. Geology and geochronology of the Miocene Rio Blanco porphyry Cu-Mo deposit, northern Peru[J]. Economic Geology, 2022, 117(5): 1013-1042.
[38]
陈玉明, 张潮, 陈秀法, 等. 南美洲地质矿产与矿业开发[M]. 武汉: 中国地质大学出版社, 2018.
[39]
金露英, 秦克章, 张西平, 等. 秘鲁中部超大型特罗莫克斑岩-夕卡岩铜钼矿地质特征及区域成矿作用[J]. 矿床地质, 2021, 40(3): 587-602.
[40]
PERELLO J. Porphyry-style alteration and mineralization of the middle Eocene to early Oligocene Andahuaylas-Yauri belt, Cuzco region, Peru[J]. Economic Geology, 2003, 98(8): 1575-1605.
[41]
刘大文. 地球化学块体的概念及其研究意义[J]. 地球化学, 2002, 31(6): 539-548.
[42]
陈玉明, 陈秀法, 赵宏军. 秘鲁的矿产资源和矿业开发[J]. 中国矿业, 2015, 24(11): 33-38, 112.
[43]
STERN C R. Role of subduction erosion in the generation of Andean magmas[J]. Geology, 1991, 19(1): 78.
[44]
ERICKSEN G E, CAÑAS PINOCHET M T, REINEMUND J A. Geology of the Andes and its relation to hydrocarbon and mineral resources[M]// MPODOZIS C, RAMOS V. The Andes of Chile and Argentina, Volume 11. Houston: the Circum-Pacific Gouncil for Energy and Mineral Resources, 1990: 59-90.
[45]
COOKE D R, HOLLINGS P, WALSHE J L. Giantporphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
[46]
SUN W D, LING M X, YANG X Y, et al. Ridge subduction and porphyry copper-gold mineralization: an overview[J]. Science China: Earth Sciences, 2010, 53(4): 475-484.
[47]
孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 40(2): 127-137.
[48]
HOFMANN A W. Chemical differentiation of theearth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314.
[49]
MCDONOUGH W, SUN S S. The composition of the earth[J]. Chemical Geology, 1995, 120: 223-253.
[50]
RUDNICK R L, GAO S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 659.

基金

中国地质调查局地质调查项目(DD20190451)
中国地质调查局地质调查项目(DD20221807)
地球观测组织(GEO)项目(WP23_25)
国家自然科学基金项目(U2244219)
国家自然科学基金项目(41903025)
物化探所中央财政科研项目结余资金资助项目(JY202106)
河北省重大科技成果转化项目(19057411Z)
中央级公益性科研院所基本科研业务费专项资金资助项目(AS2024J03)
中央级公益性科研院所基本科研业务费专项资金资助项目(AS2022P03)
深地国家科技重大专项(2024ZD1002402)

评论

PDF(8723 KB)

Accesses

Citation

Detail

段落导航
相关文章

/