青海共和盆地干热岩地应力测量及其储层压裂改造意义分析

许家鼎, 张重远, 张浩, 白金朋, 张士安, 张盛生, 秦向辉, 孙东生, 何满潮, 吴满路

PDF(11784 KB)
PDF(11784 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (6) : 130-144. DOI: 10.13745/j.esf.sf.2024.7.14
地热探测技术

青海共和盆地干热岩地应力测量及其储层压裂改造意义分析

作者信息 +

In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification

Author information +
History +

摘要

近年来,我国在干热岩资源勘查和钻井技术方面取得一定的进展,但是对于高温干热岩压裂技术的基础研究还较薄弱。对于增强型地热系统,一般采用水力压裂的方式向干热岩储层注入高压流体使储层中的天然裂隙扩展延伸,从而达到增大储层渗透性和热交换面积的目的。因此,可靠的地应力数据对指导干热岩储层改造具有重要意义。本文以我国青海共和干热岩试采工程为例,首先,结合滞弹性应变恢复法(ASR)、直径变形分析法(DCDA)、岩心饼化法和成像测井法获得场区详细的地应力数据;其次,讨论了地应力状态对干热岩储层开发的影响;最后,为了评价现今应力状态下储层压裂改造的效果,利用离散裂隙网格(DFN)方法建立了水力压裂区的三维裂隙地质模型,通过数值模拟计算每个裂隙的滑动趋势(Ts)和膨胀趋势(Td),并分析了在不同的注水压力下裂隙的活动性。研究表明:(1)共和干热岩场区花岗岩储层范围(3 500~4 000 m)内主要发育逆断层型地应力状态,总体以水平挤压应力为主导;(2)在3 500~4 000 m深度水平最大主应力的平均方向为39.35°±14.23°,整体上呈NE向,这与青藏高原东北缘向NE方向推挤运动有关;(3)适合共和干热岩场区的注水改造压力为46~55 MPa,且裂隙剪切活化后多为张开裂隙(高膨胀趋势),有利于增加热交换的面积,提高干热岩的开采效率;(4)地应力实测结果和微地震监测结果显示,天然裂隙在水力压裂下除了水平方向上的扩展外还有垂直方向上的扩展,最终形成水平—垂直裂隙网络。本文研究成果也可为我国未来的干热岩地应力测量及其在开发评价中的应用提供参考。

Abstract

China has made some progress in recent years in the exploration and development of hot dry rock (HDR) resources and drilling technology, but is relatively lacking in basic research on high-temperature HDR fracturing technology. For enhanced geothermal systems, hydraulic fracturing is generally used to inject high-pressure fluid into the reservoir to expand and extend natural fractures, in order to increase the reservoir permeability and heat exchange area. Thus, reliable in-situ stress data are important for guiding the stimulation of reservoir reconstruction. Taking the Qinghai Gonghe HDR pilot project as an example, this paper first obtains the in-situ stress state by combining the anelastic strain recovery (ASR), diametrical core deformation analysis (DCDA), core cake, and image logging methods. Next, the influence of the in-situ stress state on the development of HDR reservoirs is discussed. Finally, to evaluate the effectiveness of reservoir fracturing under the current in-situ stress state, a three-dimensional fracture geological model of the hydraulic fracturing zone is established using the discrete fracture network (DFN) method. The sliding tendency (Ts) and dilation tendency (Td) of each fracture are calculated through numerical simulation, and fracturing activities under different injection pressures are analyzed. According to the results, (1) the main type of in-situ stress state was the thrust faulting regime developed within the granite reservoir range (3500—4000 m) in the Gonghe HDR reservoir, with the horizontal compressive stress being the dominant stress. (2) The average direction of the maximum principal stress at 3500—4000 m depth was 39.35°±14.23°, predominantly oriented in the NE direction, consistent with the notion that the compressive stress was associated with the NE-trending compression movement on the northeastern rim of the Qinghai-Tibet Plateau. (3) The suitable fracturing pressure for the Gonghe HDR field area was 46—55 MPa, and most fractures tend to open after shear activation (high-dilation tendency), which was conducive to increasing the area of heat exchange and improving extraction efficiency. (4) Results of in-situ stress measurement and microseismic monitoring showed that natural fractures expanded horizontally and vertically under hydraulic fracturing, ultimately forming a horizontal-vertical fracture network. The research results provide a reference for future in-situ stress measurement and its application in the assessment of hot dry rock development in China.

关键词

青海共和 / 干热岩 / 地应力测量 / 水力压裂 / 储层评价

Key words

Qinghai Gonghe / hot dry rock / in-situ stress measurement / hydraulic fracturing / reservoir evaluation

中图分类号

P553;P314

引用本文

导出引用
许家鼎 , 张重远 , 张浩 , . 青海共和盆地干热岩地应力测量及其储层压裂改造意义分析. 地学前缘. 2024, 31(6): 130-144 https://doi.org/10.13745/j.esf.sf.2024.7.14
Jiading XU, Chongyuan ZHANG, Hao ZHANG, et al. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification[J]. Earth Science Frontiers. 2024, 31(6): 130-144 https://doi.org/10.13745/j.esf.sf.2024.7.14

参考文献

[1]
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
[2]
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
[3]
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[4]
许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45.
[5]
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[6]
蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366-1381.
[7]
付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526-540.
[8]
陈作, 许国庆, 蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1-8.
[9]
KIM K H, REE J H, KIM Y, et al. Assessing whether the 2017 Mw5.4 Pohang earthquake in South Korea was an induced event[J]. Science, 2018, 360(6392): 1007-1009.
[10]
SEITHEL R, GAUCHER E, MUELLER B, et al. Probability of fault reactivation in the Bavarian Molasse Basin[J]. Geothermics. 2019, 82: 81-90.
[11]
许家鼎, 张重远, 缑艳红, 等. 干热岩地应力测量评价方法与前沿挑战[J]. 地球学报, 2023, 44(1): 200-210.
[12]
BARIA R, BAUMGÄRTNER J, RUMMEL F, et al. HDR/HWR reservoirs: concepts, understanding andcreation[J]. Geothermics, 1999, 28(4/5): 533-552.
[13]
BROWN D W, DUCHANE D V, HEIKEN G, et al. Mining the earth’s heat: hot dry rock geothermal energy[M]. Berlin, Heidelberg: Springer, 2012.
[14]
OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144.
[15]
赵金洲, 任岚, 胡永全. 页岩储层压裂缝成网延伸的受控因素分析[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 1-9.
[16]
MAO R B, FENG Z J, LIU Z H, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granitespecimens[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 278-286.
[17]
沈骋, 赵金洲, 谢军, 等. 海相页岩缝网可压性靶窗空间分布预测: 以川南长宁区块为例[J]. 地质力学学报, 2020, 26(6): 881-891.
[18]
JUNG R. EGS: goodbye or back to the future 95[M]//BUNGER A, JEFFRE R. Effective and sustainable hydraulic fracturing. Brisbane, Australia: InTech, 2013: 458-477.
[19]
MORRIS A P, FERRILL D A, WALTER G R, et al. Lessons learned from the Youngstown, Ohio induced earthquake sequence from January 2011 to January 2012[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 783-796.
[20]
宋博文, 徐亚东, 梁银平, 等. 中国西部新生代沉积盆地演化[J]. 地球科学: 中国地质大学学报, 2014, 39(8): 1035-1051.
[21]
施炜, 马寅生, 吴满路, 等. 青藏高原东北缘共和盆地第四纪磁性地层学研究[J]. 地质力学学报, 2006, 12(3): 317-323.
[22]
YUAN D Y, GE W P, CHEN Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 2013, 32(5): 1358-1370.
[23]
唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065.
[24]
雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020.
[25]
蔺文静, 甘浩男, 赵振, 等. 青海共和盆地岩石圈热—流变结构及地热意义[J]. 地球学报, 2023, 44(1): 45-56.
[26]
GAO J, ZHANG H J, ZHANG S Q, et al. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau[J]. Geothermics, 2018, 76: 15-25.
[27]
张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087-1102.
[28]
HAIMSON B. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independent evidence in support of results[M]//XIE F R. Rock stress and earthquakes. Boca Raton: CRC Press, 2010: 11-14.
[29]
MATSUKI K. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core[C]// Society of geomechanics. 7th ISRM Congress. Aachen, Germany, 1991: 405-414.
[30]
LIN W R, KWAŚNIEWSKI M, IMAMURA T, et al. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core[C]// Society of geomechanics. 7th ISRM Congress. Aachen, Germany, 1991: 405-414.
[31]
TEUFEL L. Determination of in situ stress from paretial anelastic strain recovery measurements of oriented cores from deep boreholes[C]// Society of geomechanics. U.S. Symposium on Rock Mechanics. Madison: University of Wisconsin, 1993: 176-188.
[32]
ZHANG C Y, LIN W R, HE M C, et al. Determining in-situ stress state by anelastic strain recovery method beneath Xiamen: implications for the coastal region of Southeastern China[J]. Rock Mechanics and Rock Engineering, 2022, 55(9): 5687-5703.
[33]
FUNATO A, ITO T. A new method of diametrical core deformation analysis for in situ stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 112-118.
[34]
杨跃辉, 孙东生, 郑秀华, 等. 岩芯直径变形分析法及其在松科2井深部地应力调查中的应用[J]. 中南大学学报(自然科学版), 2019, 50(12): 3106-3113.
[35]
李彦恒, 谭可可, 冯利. 基于岩饼几何形态测量的原地应力测定方法[J]. 岩土力学, 2012, 33(增刊2): 224-228.
[36]
LIM S S, MARTIN C D. Core disking and its relationship with stress magnitude for Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 254-264.
[37]
张丰收, 李猛利, 张重远, 等. 高地应力下深部岩芯饼化裂缝发展规律及机制研究[J]. 岩石力学与工程学报, 2022, 41(3): 533-542.
[38]
SUN D S, SONE H, LIN W R, et al. Stress state measured at -7 km depth in the Tarim Basin, NW China[J]. Scientific Reports, 2017, 7: 4503.
[39]
BELL J S, GOUGH D I. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 1979, 45(2): 475-482.
[40]
PLUMB R A, HICKMAN S H. Stress-induced borehole elongation: a comparison between the four-arm dipmeter and the borehole televiewer in the Auburn Geothermal Well[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B7): 5513-5521.
[41]
都昌庭. 共和地震震源机制解特征[J]. 高原地震, 2001, 13(4): 1-5.
[42]
郝明, 沈正康, 王庆良. 1990年青海共和7.0级地震震后垂直形变研究[J]. 地震学报, 2010, 32(5): 557-569, 633.
[43]
ZHANG C Y, LI B, LI H L, et al. Stress estimation in a 3 km-deep geothermal borehole: a snapshot of stress state in southern Cathaysia Block, China[J]. Tectonophysics, 2023, 864: 230031.
[44]
孟文, 郭祥云, 李永华, 等. 青藏高原东北缘构造应力场及动力学特征[J]. 地球物理学报, 2022, 65(9): 3229-3251.
[45]
ZIMMERMANN G, MOECK I, BLÖCHER G. Cyclic waterfrac stimulation to develop an Enhanced Geothermal System (EGS): conceptual design and experimental results[J]. Geothermics, 2010, 39(1): 59-69.
[46]
LISLE R J, SRIVASTAVA D C. Test of the frictional reactivation theory for faults and validity of fault-slip analysis[J]. Geology, 2004, 32(7): 569-572.
[47]
MOECK I, KWIATEK G, ZIMMERMANN G. Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir[J]. Journal of Structural Geology, 2009, 31(10): 1174-1182.
[48]
SCHWAB D R, BIDGOLI T S, TAYLOR M H. Characterizing the potential for injection-induced fault reactivation through subsurface structural mapping and stress field analysis, Wellington field, sumner county, Kansas[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10132-10154.
[49]
MORRIS A, FERRILL D A, BRENT HENDERSON D B. Slip-tendency analysis and fault reactivation[J]. Geology, 1996, 24(3): 275-278.
[50]
WORUM G, VAN WEES J D, BADA G, et al. Slip tendency analysis as a tool to constrain fault reactivation: a numerical approach applied to three-dimensional fault models in the Roer Valley Rift system (Southeast Netherlands)[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): 1-16.
[51]
MASSIRONI M, BISTACCHI A, MENEGON L. Misoriented faults in exhumed metamorphic complexes: rule or exception?[J]. Earth and Planetary Science Letters, 2011, 307(1/2): 233-239.
[52]
FERRILL D A, MORRIS A P, MCGINNIS R N, et al. Mechanical stratigraphy and normal faulting[J]. Journal of Structural Geology, 2017, 94: 275-302.
[53]
HANTUSH M S. Drawdown around Wells of variable discharge[J]. Journal of Geophysical Research, 1964, 69(20): 4221-4235.
[54]
BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4): 615-626.
[55]
ZHANG C Y, FAN D J, ELSWORTH D, et al. Mechanisms of stress- and fluid-pressure-driven fault reactivation in Gonghe granite: implications for injection-induced earthquakes[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 174: 105642.
[56]
ZHANG C Y, HU Z J, ELSWORTH D, et al. Frictional stability of laumontite under hydrothermal conditions and implications for injection-induced seismicity in the Gonghe geothermal reservoir, Northwest China[J]. Geophysical Research Letters, 2024, 51(10): e2023GL108103.

基金

中国地质调查局地质调查项目(DD20190138)
国家自然科学基金项目(42177175)
中央级科研单位基本科研项目(DZLXJK202204)

评论

PDF(11784 KB)

Accesses

Citation

Detail

段落导航
相关文章

/