华北古潜山优势传热机制研究:以雄安新区为例

王贵玲, 马峰, 张薇, 朱喜, 余鸣潇, 张汉雄, 罗成

PDF(6525 KB)
PDF(6525 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (6) : 52-66. DOI: 10.13745/j.esf.sf.2024.7.10
地热赋存基础理论

华北古潜山优势传热机制研究:以雄安新区为例

作者信息 +

Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area

Author information +
History +

摘要

华北中元古界古潜山是我国北方主要规模化开发的地热储层,具有储热量大、埋藏浅和易回灌等特点。古潜山热储受物性特征、空间展布和地质构造等因素制约,控热机制多元,传热过程复杂,针对其热成因机制的研究一直受到重视。本文以雄安新区古潜山热储为研究对象,基于近年来雄安新区地热勘探井资料分析,提出了华北古潜山热储优势流传热理论,古潜山热储的热源主要来自深部幔源传热,而壳源热流低于30 mW/m2,华北克拉通破坏后,随着岩石圈拉张减薄,地幔热对流增强,形成了由深到浅的优势传热通道,地表热流通量升高。古潜山高热导率储层形成了热在垂向和水平向上向储层聚集的传导优势热流,流体在高孔渗碳酸盐岩储层中循环形成了对流优势热流,断裂加剧了传导和对流沿构造方向的聚热效应。在热量聚集作用下,古潜山不同构造部位钻孔测温曲线表现出5种类型,分别为传导型、传导—对流—传导型、传导—对流—弱对流型、传导—强对流型和传导—弱对流型等。断裂带为地下热水的循环和热的富集提供了空间优势流动通道,通过靠近容城断裂的典型钻孔温度测井结果,建立解析方程计算容城断裂地下水热对流占比为29.2%。本研究通过综合分析古潜山优势流传热的影响因素,为华北地热成因模式研究提供了新的思路。

Abstract

Buried-hill reservoirs are the primary geothermal reservoirs widely developed in northern China. They are characterized by significant heat storage capacity, shallow depth, and easy re-injection. The reservoirs, constrained by their physical properties, spatial distribution, and geological structures, have diverse heat control mechanisms and complex heat transfer processes, and recent research is focused on the heat transfer and accumulation mechanisms. In this paper, based on the analysis of geothermal exploration wells constructed in Xiong’an, we propose a theory of dominant heat transfer in the buried-hill geothermal field of North China. According to this theory, the heat source of the buried-hill reservoirs originates mainly from the deep mantle, while the crustal heat flow is less than 30 mW/m. The enhanced mantle convection from the destruction of the North China Craton (NCC) leads to dominant heat flow from the deep mantle to shallower depths, and with the tensile thinning of the lithosphere in the NCC the surface heat flow increases significantly. The high thermal conductivity buried-hill reservoirs creates conductive dominant heat flow, vertically and horizontally, towards the carbonate reservoirs, while fluid circulation in the highly porous carbonate reservoirs creates convective dominant heat flow. Faulting exacerbates the conduction and convection heat gathering effect along the fault direction. The temperature profiles of boreholes at various sites in the buried hill exhibit five types: conduction, conduction-convection-conduction, conduction-convection-weak convection, conduction-strong convection, and conduction-weak convection. The percentage of thermal convection in groundwater in the Rongcheng Fault was calculated to be 29.2%. Through comprehensive analysis of the influencing factors of the dominant heat flow and heat accumulation in the buried-hill geothermal field, this research provides new insights into the heat transfer mechanism in North China.

关键词

古潜山热储 / 优势传热机制 / 钻孔测温 / 地温场 / 雄安新区

Key words

buried-hill geothermal reservoirs / dominant heat transfer mechanism / temperature logging / geothermal field / Xiong’an new area

中图分类号

P314

引用本文

导出引用
王贵玲 , 马峰 , 张薇 , . 华北古潜山优势传热机制研究:以雄安新区为例. 地学前缘. 2024, 31(6): 52-66 https://doi.org/10.13745/j.esf.sf.2024.7.10
Guiling WANG, Feng MA, Wei ZHANG, et al. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area[J]. Earth Science Frontiers. 2024, 31(6): 52-66 https://doi.org/10.13745/j.esf.sf.2024.7.10

参考文献

[1]
WHITE D E. Characteristics of geothermal resources[J]. EOS: Transactions, American Geophysical Union, 1973, 54(4): 214-221.
[2]
MUFFLER L J P, CHRISTIANSEN R L. Geothermal resource assessment of the United States[J]. Pured and Applied Geophysics, 1978, 117(1/2): 160-171.
[3]
黄尚瑶, 王钧, 汪集旸. 关于地热带分类及地热田模型[J]. 水文地质工程地质, 1983, 10(5): 1-7.
[4]
陈墨香, 黄歌山, 汪缉安, 等. 渤海地温场特点的初步研究[J]. 地质科学, 1984, (4): 392-401.
[5]
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
[6]
郭瑞婧, 纪友亮, 马铮涛, 等. 雄安新区雾迷山组岩溶热储成储机制及发育模式[J]. 古地理学报, 2023, 25(1): 180-197.
[7]
陈墨香, 汪集旸, 汪缉安, 等. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 1990, 64(1): 80-91.
[8]
庞忠和, 庞菊梅, 孔彦龙, 等. 大型岩溶热储识别方法与规模化可持续开采技术[J]. 科技促进发展, 2020, 16(增刊1): 299-306.
[9]
康凤新, 史启朋, 马哲民, 等. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例[J]. 地质学报, 2023, 97(1): 221-237.
[10]
岳高凡, 王贵玲, 马峰. 雄安新区古潜山热状态与地热能聚敛机制[J]. 地热能, 2020(2): 7-9.
[11]
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[12]
朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135-1159.
[13]
何丽娟, 邱楠生. 热与克拉通破坏[J]. 地质科学, 2014, 49(3): 728-738.
[14]
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[15]
杨进辉, 吴福元. 华北东部三叠纪岩浆作用与克拉通破坏[J]. 中国科学D辑: 地球科学, 2009, 39(7): 910-921.
[16]
何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11(9): 966-969.
[17]
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
[18]
王钧, 黄尚瑶, 黄歌山, 等. 华北中、 新生代沉积盆地的地温分布及地热资源[J]. 地质学报, 1983, 57(3): 304-316.
[19]
王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21.
[20]
毛小平, 汪新伟, 李克文, 等. 地热田热量来源及形成主控因素[J]. 地球科学, 2018, 43(11): 4256-4266.
[21]
汪新伟, 高楠安, 王婷灏, 等. 河北献县地热田地热异常的分布特征及成因机制[J]. 地质学报, 2022, 96(7): 2611-2625.
[22]
陈必光. 地热对井裂隙岩体中渗流传热过程数值模拟方法研究[D]. 北京: 清华大学, 2014.
[23]
刘国栋. 地壳上地幔结构研究的某些新进展(二)[J]. 地震学刊, 1984, 4(2): 17-22.
[24]
李松林, 苗琪, 王旭. 华北地区的地壳低速层[J]. 大地测量与地球动力学, 2011, 31(5): 35-38, 60.
[25]
康凤新, 隋海波, 李常锁, 等. 岩溶热储古岩溶发育机制与地热水富集模式[J]. 中国石油大学学报(自然科学版), 2024, 48(1): 13-24.
[26]
周瑶琪, 刘婕, 张鑫, 等. 穿地壳岩浆系统改变岩石圈流变和热结构[J]. 中国石油大学学报(自然科学版), 2024, 48(1): 1-12.
[27]
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
[28]
王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32.
[29]
牛树银, 孙爱群, 张建珍, 等. 华北东部构造体制转化与盆山耦合成因[C]//中国地质学会. “中国东部和海域地质特征及资源环境” 学术研讨会论文集, 2013: 83-89.
[30]
戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件[M]. 北京: 科学出版社, 1995.
[31]
XU J, HAN Z J, W C H et al. Preliminary study on two newly-generated seismotectonic zones in north and Southwest China[J]. Earthquake Researth in China, 1996, 10(4): 78-86.
[32]
汪集旸, 胡圣标, 程本合, 等. 中国大陆科学钻探靶区深部温度预测[J]. 地球物理学报, 2001, 44(6): 774-782.
[33]
何丽娟, 胡圣标, 杨文采, 等. 中国大陆科学钻探主孔揭示的大陆地壳生热模型[J]. 岩石学报, 2006, 22(11): 2808-2814.
[34]
王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11): 4313-4322.
[35]
熊亮萍, 高维安. 隆起与拗陷地区地温场的特点[J]. 地球物理学报, 1982, 5(8): 448-456.
[36]
XIA Q K, LIU J, LIU S C, et al. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere[J]. Earth and Planetary Science Letters, 2013, 361: 85-97.
[37]
左银辉, 邱楠生, 常健, 等. 渤海湾盆地中、 新生代岩石圈热结构研究[J]. 地质学报, 2013, 87(2): 145-153.
[38]
CLAUSER C, VILLINGER H. Analysis of conductive and consvective heat transfer in a sedimentary basin, demonstrated for he Rheingraben[J]. Federal, 1990, 100(3): 393-414.
[39]
BREDEHOEFT J D, PAPAOPULOS I S. Rates of vertical groundwater movement estimated from the Earth’s thermal profile[J]. Water Resources Research, 1965, 1(2): 325-328.
[40]
SASS J H, LACHENBRUCH A H. Preliminary interpretation of thermal data from the Nevada Test Site[R]. United States, Nevada opration office, US Department of Energy, 1982.
[41]
胡圣标, 熊亮萍. 热流测量中垂向地下水运动干扰的校正方法[J]. 地质科学, 1994, 29(1): 85-92.
[42]
MA F, LI T X, ZHOU Y, et al. Paleoenvironment of Mesoproterozoic Gaoyuzhuang and Wumishan formations, North China: new insights from geochemistry and carbon and oxygen isotopes of dolostones[J]. Minerals, 2022, 12(9): 1111.
[43]
马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7): 1981-1990.

基金

中国地质科学院基本科研业务费项目(YK202305)
国家重点研发计划项目(2021YFB1507401)
国家自然科学基金项目(41602271)
中国地质调查局地质调查项目(DD20189112)

评论

PDF(6525 KB)

Accesses

Citation

Detail

段落导航
相关文章

/