
海底氢气成藏模式与全球分布
索艳慧, 姜兆霞, 李三忠, 吴立新
海底氢气成藏模式与全球分布
Ocean-floor hydrogen accumulation model and global distribution
氢能是一种清洁、高效、零碳的顶极能源。天然氢的形成和运聚与板块构造活动密切相关。地球作为整个太阳系已知唯一发育有板块构造和表面存在液态水的岩质星球,具备地球脱气、蛇纹岩水岩反应、水辐射分解等独特的地质生氢路径。占据现今地球表面面积2/3的海底,发育洋壳甚至有地幔物质的直接剥露,具备蛇纹石化形成天然氢的巨大潜力。海底天然氢有沿微板块边界的大量氢气产出机制和海底裂缝导致的海底渗透型的另类机制,现今海底微板块边界、洋底高原、海底裂隙系统、沿超慢速-慢速洋中脊和非火山型被动陆缘出露的微幔块都是寻找天然氢的有利目标,南海东北陆缘的“陆壳裂洞”也十分值得关注。由于不同构造环境的天然氢的形成和储存条件存在较大差异,天然氢在生成、运移和存储等方面存在多样性和差异性,因此难以建立一套统一的氢气成藏模式,也无法精准确定潜在资源量。已有的氢气显示和预测的有利生氢场所,能否成藏、成藏机制如何以及如何开发利用,也依然是未来需要探索的问题。
Hydrogen energy is a clean, efficient, and zero-carbon energy source. The formation, transportation, and accumulation of natural hydrogen are closely related to plate tectonics. As the only rocky planet in the solar system known to have plate tectonics and liquid water, Earth has unique geological hydrogen generation pathways such as degassing, serpentinization, and water radiolysis. The ocean-floor, which occupies two-thirds of the Earth’s surface, has great potential for natural hydrogen generation through serpentinization, due to the extensive exposure of oceanic crust or mantle along or around microplate boundaries and ocean-floor fissures. Microplate boundaries, submarine plateaus, ocean floor fracture zones, micro-mantle blocks, and non-volcanic passive continental margins are favorable targets for exploring ocean-floor natural hydrogen. The northeastern continental margin of the South China Sea is also worthy of attention. However, it is difficult to establish a unified ocean-floor hydrogen accumulation model due to the significant differences and diversity in the formation, migration, and storage conditions of natural hydrogen in different tectonic settings. The predicted hydrogen sites, whether they can form reservoirs, how they form reservoirs, and the related exploitation and utilization technologies need to be explored in the future.
海底氢气藏 / 成藏模式 / 蛇纹石化 / 微板块 / 热液系统 / 海底裂隙
ocean-floor hydrogen / accumulation model / serpentinization / microplate / hydrothermal system / ocean-floor fissures
P736;P744;TK91
[1] |
IEA. Global hydrogen review 2021[R]. Paris: IEA, 2021.
|
[2] |
韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270-1284.
|
[3] |
PRINZHOFER A, CISSÉ C S T, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326.
|
[4] |
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程: 从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4): 1063-1080.
|
[5] |
郭玲莉, 李三忠, 赵淑娟, 等. 洋−陆转换带类型与成因机制[J]. 地学前缘, 2017, 24(4): 320-328.
|
[6] |
李三忠, 索艳慧, 周洁, 等. 微板块与大板块: 基本原理与范式转换[J]. 地质学报, 2022, 96(10): 3541-3558.
|
[7] |
MACDONALD K C. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10 155-190.
|
[8] |
ZHANG M C, DI H Z, XU M, et al. Seismic imaging of Dante’s Domes oceanic core complex from streamer waveform inversion and reverse time migration[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(8): e2021JB023814.
|
[9] |
MCCOLLOM T M, BACH W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 856-875.
|
[10] |
黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7): 1901-1907.
|
[11] |
LI L F, LI Z M, ZHONG R C, et al. Direct H2S, HS− and pH measurements of high-temperature hydrothermal vent fluids with in situ Raman spectroscopy[J]. Geophysical Research Letters, 2023, 50(9): e2023GL103195.
|
[12] |
XI S C, SUN Q L, HUANG R F, et al. Different magmatic-hydrothermal fluids at the same magma source support distinct microbial communities: evidence from in situ detection[J]. Journal of Geophysical Research: Oceans, 2023, 128(5): e2023JC019703.
|
[13] |
BEAULIEU S E, SZAFRAŃSKI K M. InterRidge global database of active submarine hydrothermal vent fields version 3.4[DB]. PANGAEA, 2020. [2024-06-08]. https://doi.org/10.1594/PANGAEA.917894.
|
[14] |
TRUCHE L, JOUBERT G, DARGENT M, et al. Clay minerals trap hydrogen in the Earth’s crust: evidence from the Cigar Lake uranium deposit, Athabasca[J]. Earth and Planetary Science Letters, 2018, 493 186-197.
|
[15] |
FRYER P. Recent studies of serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle[J]. Geochemistry, 2002, 62(4): 257-302.
|
[16] |
KLEIN F, SCHROEDER T, JOHN C M, et al. Mineral carbonation of peridotite fueled by magmatic degassing and melt impregnation in an oceanic transform fault[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(8): e2315662121.
|
[17] |
ARROUVEL C, PRINZHOFER A. Genesis of natural hydrogen: new insights from thermodynamic simulations[J]. International Journal of Hydrogen Energy, 2021, 46(36): 18780-18794.
|
[18] |
GERYA T V, BERCOVICI D, BECKER T W. Dynamic slab segmentation due to brittle-ductile damage in the outer rise[J]. Nature, 2021, 599(7884): 245-250.
|
[19] |
VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223 437-461.
|
[20] |
VAN KEKEN P E, HACKER B R, SYRACUSE E M, et al. Subduction factory: 4.Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.
|
[21] |
MOTTL M J, KOMOR S C, FRYER P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: ocean Drilling Program Leg 195[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11): 9009.
|
[22] |
MYAGKIY A, MORETTI I, BRUNET F. Space and time distribution of subsurface H2 concentration in so-called “fairy circles”: insight from a conceptual 2-D transport model[J]. Bulletin de la Société Géologique de France, 2020, 191(1): 13.
|
[23] |
LARIN N, ZGONNIK V, RODINA S, et al. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia[J]. Natural Resources Research, 2015, 24(3): 369-383.
|
[24] |
ZGONNIK V, BEAUMONT V, DEVILLE E, et al. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)[J]. Progress in Earth and Planetary Science, 2015, 2(1): 31.
|
[25] |
BEKKER A, SLACK J F, PLANAVSKY N, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
|
[26] |
HAN S B, TANG Z Y, WANG C S, et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: new insights into deep Earth exploration[J]. Science Bulletin, 2022, 67(10): 1003-1006.
|
[27] |
李三忠, 索艳慧, 姜兆霞, 等. 氢构造与海底氢能系统[J]. 科学通报, 2024, https://doi.org/10.1360/TB-2024-0368.
|
[28] |
ZGONNIK V. The occurrence and geoscience of natural hydrogen: a comprehensive review[J]. Earth-Science Reviews, 2020, 203 103140.
|
[29] |
LIU Z L, PEREZ-GUSSINYE M, GARCÍA-PINTADO J, et al. Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins[J]. Geology, 2023, 51(3): 284-289.
|
[30] |
WORMAN S L, PRATSON L F, KARSON J A, et al. Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13283-13293.
|
[31] |
CHEN C L, YAN P, YU J H, et al. Seismically imaged crustal breakup in the Southwest Taiwan Basin of the northeastern South China Sea margin[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(8): e2023GC010918.
|
[32] |
姜兆霞, 李三忠, 索艳慧, 等. 海底氢能探测与开采技术展望[J]. 地学前缘, 2024, 31(4): 183-190.
|
[33] |
王璐, 金之钧, 吕泽宇, 等. 地下储氢研究进展及展望[J]. 地球科学, 2024, 49(6): 1-14.
|
/
〈 |
|
〉 |