不同直径毛管中水密度变化特性及其对土壤水密度变化的启示

李超, 程东会, 马成龙, 乔晓英, 黄梦楠, 王一式, 杨银科

PDF(1729 KB)
PDF(1729 KB)
地学前缘 ›› 2025, Vol. 32 ›› Issue (1) : 440-448. DOI: 10.13745/j.esf.sf.2024.6.38
非主题来稿选登

不同直径毛管中水密度变化特性及其对土壤水密度变化的启示

作者信息 +

Characteristics of water density variation in capillaries of different diameters and its implications for soil water density changes

Author information +
History +

摘要

土壤水的密度存在较大的变化范围,但目前还没有一个完整的理论来全面描述这种变化规律。本文利用微米直径的石英管模拟多孔介质的孔隙系统,采用质量-体积法测量了直径在50~530 μm之间的8个不同直径石英管中水的密度。结果表明:当石英管直径小于75 μm时,水的密度大于体相水的密度,最高密度为1.19 g/cm3;而直径为100~250 μm时,水的密度略小于体相水,最低为0.98 g/cm3。水密度随石英管径而变化的规律可以用类似纳兰-琼斯势的经验公式来表达。研究表明:能使水密度增大或减小的水化作用、水-固界面作用、毛细作用或空化机制均不能解释石英管中出现的水密度变化。分析认为,毛管中的复杂的水动力学和流变学,特别是管嘴的剪切增稠及其逆过程可能是不同直径石英管中水密度变化的物理机制。该机制不同于解释土壤水密度变化的传统理论,为土壤水密度变化研究提供了一个崭新的视角。如果把石英管中水密度变化规律与基于多孔介质毛管束概念的土壤含水率模型结合,可以预测不同含水率土壤中水的密度。进一步的研究应该从流变学基本理论出发,建立剪切速率与黏度和黏度与密度之间的定量关系,从理论上构建毛管水和土壤水密度变化模型。

Abstract

The density of soil water exhibits significant variation, yet no comprehensive theory currently exists to fully explain this pattern. In this study, quartz tubes with micrometer-scale diameters were used to simulate the pore systems of porous media, and the mass-volume method was employed to measure the density of water in eight quartz tubes with diameters ranging from 50 μm to 530 μm. The results indicate that when the diameter of the quartz tube is less than 75 μm, the density of water exceeds that of bulk water, reaching a maximum of 1.19 g/cm. Conversely, when the diameter ranges between 100 μm and 250 μm, the density of water is slightly lower than that of bulk water, with a minimum of 0.98 g/cm. The variation in water density with quartz tube diameter can be described using an empirical formula similar to the Lennard-Jones potential. The findings suggest that conventional mechanisms such as hydration effects, water-solid interfacial interactions, capillary effects, or cavitation cannot fully account for the observed changes in water density within the quartz tubes. Instead, the analysis indicates that the complex hydrodynamics and rheology within the capillaries: particularly shear thickening at the tube nozzle and its reverse process may be the primary physical mechanism driving the changes in water density across quartz tubes of different diameters. This mechanism represents a departure from traditional theories used to explain variations in soil water density and offers a novel perspective for understanding the phenomenon. It becomes possible to predict the density of water in soils with varying water contents by integrating the observed variation in water density within quartz tubes with soil water content models based on the concept of capillary bundles in porous media. Future research should focus on the fundamental principles of rheology to establish quantitative relationships between shear rate and viscosity, as well as between viscosity and density. Such efforts would enable the theoretical construction of models to describe the density variation of capillary water and soil water.

关键词

微米直径石英管 / 高密度水 / 低密度水 / 剪切增稠 / 土壤水密度变化

Key words

quartz tube with micron-scale diameter / high-density water / low-density water / shear thickening / soil water density changes

中图分类号

P641.12

引用本文

导出引用
李超 , 程东会 , 马成龙 , . 不同直径毛管中水密度变化特性及其对土壤水密度变化的启示. 地学前缘. 2025, 32(1): 440-448 https://doi.org/10.13745/j.esf.sf.2024.6.38
Chao LI, Donghui CHENG, Chenglong MA, et al. Characteristics of water density variation in capillaries of different diameters and its implications for soil water density changes[J]. Earth Science Frontiers. 2025, 32(1): 440-448 https://doi.org/10.13745/j.esf.sf.2024.6.38

参考文献

[1]
ZHANG C, LU N. What is the range of soil water density?critical reviews with a unified model[J]. Reviews of Geophysics, 2018, 56(3): 532-562.
[2]
张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011.
[3]
MARTIN R T. Adsorbed water on clay: a review[J]. Clays and Clay Minerals (National Conference on Clays and Clay Minerals), 1960, 9: 28-70.
[4]
BAHRAMIAN Y, BAHRAMIAN A, JAVADI A. Confined fluids in clay interlayers: a simple method for density and abnormal pore pressure interpretation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521: 260-271.
[5]
MILLINGTON R J, QUIRK J P. Permeability of porous media[J]. Nature, 1959, 183(4658): 387-388.
[6]
程东会, 李慧, 王军, 等. 准饱和多孔介质中地下水驱替速率、 圈闭气体饱和度和准饱和渗透系数的关系[J]. 地学前缘, 2022, 29(3): 256-262.
[7]
MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
[8]
LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461-482.
[9]
MARCUS Y. Thermodynamics of solvation of ions.part 5.: gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(18): 2995-2999.
[10]
滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009.
[11]
ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. Burlington, MA: Academic Press, 2011.
[12]
ALEXIADIS A, KASSINOS S. Molecular simulation of water in carbon nanotubes[J]. Chemical Reviews, 2008, 108(12): 5014-5034.
[13]
LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.
[14]
DUAN C H, KARNIK R, LU M C, et al. Evaporation-induced cavitation in nanofluidic channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3688-3693.
[15]
ZHENG Q, DURBEN D J, WOLF G H, et al. Liquids at large negative pressures: water at the homogeneous nucleation limit[J]. Science, 1991, 254(5033): 829-832.
[16]
LIN NY, GUY B M, HERMES M, et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions[J]. Physical Review Letters, 2015, 115(22): 228304.
[17]
BRADY J F, MORRIS J F. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion[J]. Journal of Fluid Mechanics, 1997, 348: 103-139.
[18]
WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32.
[19]
BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. The Journal of chemical physics, 1989, 91(3): 1866-1874.
[20]
邓耿, 尉志武. 液态水的结构研究进展[J]. 科学通报, 2016, 61(30): 3181-3187.
[21]
SPURK J, AKSEL N. Fluid mechanics[M]. Berlin: Springer Science and Business Media, 2007.
[22]
DURST F, LOY T. Investigations of laminar flow in a pipe with sudden contraction of cross sectionalarea[J]. Computers and Fluids, 1985, 13(1): 15-36.
[23]
齐鄂荣, 曾玉红. 工程流体力学[M]. 武汉: 武汉大学出版社, 2005.
[24]
赵孝保. 工程流体力学[M]. 3版. 南京: 东南大学出版社, 2012.
[25]
BULLEN P R, CHEESEMAN D J, HUSSAIN L A, et al. The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow[J]. InternationalJournal of Heat and Fluid Flow, 1987, 8(2): 111-118.
[26]
CHANG CC, CHENG D H. Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces[J]. Hydrology and Earth System Sciences, 2018, 22(9): 4621-4632.
[27]
程东会, 常琛朝, 钱康, 等. 考虑薄膜水的利用介质粒度分布获取水土特征曲线的方法[J]. 水科学进展, 2017, 28(4): 534-542.

基金

国家自然科学基金项目(41972248)
国家自然科学基金项目(42372291)
陕西省自然科学基础研究计划项目(2019JM-146)
陕西省重点研发计划项目(2021ZDLSF05-03)

评论

PDF(1729 KB)

Accesses

Citation

Detail

段落导航
相关文章

/