复杂构造区全层系地质力学建模及其地质与工程应用

徐珂, 刘敬寿, 张辉, 张冠杰, 张滨鑫, 王海应, 张禹, 来姝君, 钱子维, 强剑力

PDF(7698 KB)
PDF(7698 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (5) : 195-208. DOI: 10.13745/j.esf.sf.2024.6.28
致密砂岩储层裂缝研究

复杂构造区全层系地质力学建模及其地质与工程应用

作者信息 +

Geological and engineering applications of full-stratum geomechanical modeling in complex structural areas

Author information +
History +

摘要

受区域挤压、岩性和构造形态等多种因素的综合影响,复杂构造区具有地应力非均质性和各向异性强、现今地应力场在空间变化大的特征,严重制约了该类地区油气勘探开发进展。为解决复杂构造区地质力学建模难度大、精度低,且现有三维地应力建模方法在复杂构造连片建模中的不准确问题,以库车坳陷博孜大北地区为例,提出了复杂构造区地质体全层系逆向有限元地质力学建模方法,通过对部分起伏较大、跨度大的长条连体背斜迭代扫描,准确建立断层与岩体复杂交切关系,实现了复杂构造区地应力网格建模和误差追溯。明确了博孜大北地区现今地应力分布特征,揭示了博孜大北地区深层储层地应力强非均质性和强各向异性的主控因素,进而通过逆向有限元建模方法明确了钻井过程中产生应力扰动范围。研究结果表明:(1)逆向有限元地质力学建模法是复杂构造区全层系地质力学建模的有效方法,建模结果与实际的勘探开发生产需要吻合度高;(2)明确了盐上岩石力学层结构和浅部高陡地层产状是影响博孜大北地区储层地应力强非均质性和各向异性的关键;(3)逆向有限元地质力学建模法是明确钻井过程中应力扰动范围的有效方法,是保障油气高效勘探开发的重要手段。

Abstract

Areas with complex geological features have poorly defined geostress distribution patterns with strong geostress heterogeneity and anisotropy, which seriously restrict the progress of oil and gas exploration and development. To solve the problems of high modeling accuracy requirements for complex structures and lithology and inaccuracies in current 3D geomechanical modeling techniques for complex structures, this paper, taking the Bozi-Dabei area in Kuqa depression as an example, proposes a full-stratum inverse finite element geomechanical modeling technique for complex structure areas. By iterative scanning of long and large-scale strip-connected anticlines, the modeling accuracy is improved, and the complex intersection relationship between faults and rock masses is accurately established—thus, the modeling of geostress mesh and error tracing in areas with complex structures is achieved. Using this technique, the current distribution characteristics of geostresses in Bozi-Dabei were clarified, and the main controlling factors of strong geostress heterogeneity and anisotropy in deep reservoirs were revealed. Furthermore, the range of stress disturbance during drilling was clearly defined. Results showed that (1) the modeling technique was effective for full-stratum modeling of complex deformation areas, with high accuracy meeting the needs of exploration, development, and production. (2) The key factors affecting the strong geostress heterogeneity and anisotropy in reservoirs of the study area were the mechanical-layer structure of salt layers and the attitude of shallow high, steep strata. (3) The modeling technique was effective for determining the range of stress disturbance during drilling, thus it can be an important evaluation tool for efficient oil and gas exploration and development.

关键词

复杂构造区 / 地质力学建模 / 三维应力场 / 博孜大北地区 / 库车坳陷

Key words

complex structure / geological and mechanical modeling / 3D stress field / Bozi-Dabei area / Kuqa depression

中图分类号

P618.130.2;P554

引用本文

导出引用
徐珂 , 刘敬寿 , 张辉 , . 复杂构造区全层系地质力学建模及其地质与工程应用. 地学前缘. 2024, 31(5): 195-208 https://doi.org/10.13745/j.esf.sf.2024.6.28
Ke XU, Jingshou LIU, Hui ZHANG, et al. Geological and engineering applications of full-stratum geomechanical modeling in complex structural areas[J]. Earth Science Frontiers. 2024, 31(5): 195-208 https://doi.org/10.13745/j.esf.sf.2024.6.28

参考文献

[1]
杨海军, 孙雄伟, 潘杨勇, 等. 塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向[J]. 天然气工业, 2020, 40(1): 31-37.
[2]
王清华, 徐振平, 张荣虎, 等. 塔里木盆地油气勘探新领域、 新类型及资源潜力[J]. 石油学报, 2024, 45(1): 15-32.
[3]
张士诚, 李四海, 邹雨时, 等. 页岩油水平井多段压裂裂缝高度扩展试验[J]. 中国石油大学学报(自然科学版), 2021, 45(1): 77-86.
[4]
董长银, 张清华, 崔明月, 等. 复杂条件下疏松砂岩油藏动态出砂预测研究[J]. 石油钻探技术, 2015, 43(6): 81-86.
[5]
徐珂, 戴俊生, 商琳, 等. 南堡凹陷现今地应力特征及影响因素[J]. 中国矿业大学学报, 2019, 48(3): 570-583.
[6]
曲占庆, 田雨, 李建雄, 等. 水平井多段分簇压裂裂缝扩展形态数值模拟[J]. 中国石油大学学报(自然科学版), 2017, 41(1): 102-109.
[7]
王珂, 戴俊生, 刘海磊, 等. 塔里木盆地克深气田现今地应力场特征[J]. 中南大学学报(自然科学版), 2015, 46(3): 941-951.
[8]
雷刚林, 戴俊生, 马玉杰, 等. 库车坳陷克深三维区现今地应力场及储层裂缝数值模拟[J]. 大庆石油地质与开发, 2015, 34(1): 18-23.
[9]
徐珂, 戴俊生, 冯建伟, 等. 南堡凹陷高深北区三维非均质应力场精细预测[J]. 中国矿业大学学报, 2018, 47(6): 1357-1367.
[10]
徐珂, 汪必峰, 付晓龙, 等. 渤南油田义176区块三维应力场智能预测[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 75-84.
[11]
何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2): 201-218.
[12]
能源, 谢会文, 孙太荣, 等. 克拉苏构造带克深段构造特征及其石油地质意义[J]. 中国石油勘探, 2013, 18(2): 1-6.
[13]
王清华, 张荣虎, 杨宪彰, 等. 库车坳陷东部迪北地区侏罗系阿合组致密砂岩气勘探重大突破及地质意义[J]. 石油学报, 2022, 43(8): 1049-1064.
[14]
余一欣, 汤良杰, 杨文静, 等. 库车坳陷盐相关构造与有利油气勘探领域[J]. 大地构造与成矿学, 2007, 31(4): 404-411.
[15]
杨克基, 漆家福, 刘傲然, 等. 库车坳陷中段基底断裂特征及其对盐构造变形的影响[J]. 地质科学, 2022, 57(4): 991-1008.
[16]
李艳友, 漆家福. 库车坳陷克拉苏构造带大北—克深区段差异变形特征及其成因分析[J]. 地质科学, 2013, 48(4): 1177-1186.
[17]
王珂, 肖安成, 曹婷, 等. 塔里木盆地库车坳陷北部构造带地质结构与油气勘探领域[J]. 地质学报, 2022, 96(2): 368-386.
[18]
王珂, 张荣虎, 曾庆鲁, 等. 库车坳陷博孜—大北地区下白垩统深层-超深层储层特征及成因机制[J]. 中国矿业大学学报, 2022, 51(2): 311-328.
[19]
杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1): 12-20.
[20]
曾庆鲁, 莫涛, 赵继龙, 等. 7000 m以深优质砂岩储层的特征、 成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业, 2020, 40(1): 38-47.
[21]
魏国齐, 王俊鹏, 曾联波, 等. 克拉苏构造带盐下超深层储层的构造改造作用与油气勘探新发现[J]. 天然气工业, 2020, 40(1): 20-30.
[22]
徐珂, 杨海军, 张辉, 等. 基于地质力学方法的深层致密气藏高效勘探技术: 以库车坳陷迪北气藏为例[J]. 地球科学, 2023, 48(2): 621-639.
[23]
吴珍云, 杨秀磊, 尹宏伟, 等. 库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素[J]. 地球科学, 2023, 48(4): 1271-1287.
[24]
常德双, 王贵重, 温铁民, 等. 中国前陆冲断带油气地震勘探技术及发展方向[J]. 石油学报, 2024, 45(1): 276-294.
[25]
赖锦, 肖露, 赵鑫, 等. 深层-超深层优质碎屑岩储层成因与测井评价方法: 以库车坳陷白垩系巴什基奇克组为例[J]. 石油学报, 2023, 44(4): 612-625.
[26]
DENG F C, YAN C L, JIA S P, et al. Influence of sand production in an unconsolidated sandstone reservoir in a deepwater gas field[J]. Journal of Energy Resources Technology, 2019, 141(9): 092904.
[27]
ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007.
[28]
HUDSON J A, COOLING C M. In situ rock stresses and their measurement in the U.K.: Part I. The current state of knowledge[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1988, 25(6): 363-370.
[29]
BROWN E T, HOEK E. Trends in relationships between measured in situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(4): 211-215.
[30]
BROOKE-BARNETT S, FLOTTMANN T, PAUL P K, et al. Influence of basement structures on in situ stresses over the Surat Basin, Southeast Queensland[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(7): 4946-4965.
[31]
汪如军, 赵力彬, 张永灵. 基于最小耗能原理的库车坳陷超深致密砂岩裂缝定量预测[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 23-35.
[32]
蔡振忠, 徐珂, 张辉, 等. 基于地质工程一体化的超深井提速提产: 以塔里木盆地库车坳陷为例[J]. 新疆石油地质, 2022, 43(2): 206-213.
[33]
王志民, 张辉, 徐珂, 等. 超深裂缝性砂岩气藏增产地质工程一体化关键技术与实践[J]. 中国石油勘探, 2022, 27(1): 164-171.
[34]
张辉, 杨海军, 尹国庆, 等. 地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践[J]. 中国石油勘探, 2020, 25(2): 120-132.
[35]
孙金声, 李锐, 王韧, 等. 准噶尔盆地南缘井壁失稳机理及对策研究[J]. 西南石油大学学报(自然科学版), 2022, 44(1): 1-12.
[36]
丁乙, 刘向君, 罗平亚, 等. 弱面结构对页岩地层井壁稳定性影响研究[J]. 地下空间与工程学报, 2018, 14(4): 1130-1136.
[37]
卢运虎, 肖先恒, 赵琳, 等. 温度对超深裂缝性地层井壁稳定性的影响[J]. 钻井液与完井液, 2020, 37(2): 160-167.
[38]
徐珂, 杨海军, 张辉, 等. 塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践[J]. 中国石油勘探, 2022, 27(5): 106-115.

基金

中国石油天然气股份有限公司重大科技专项“库车坳陷深层-超深层天然气田开发关键技术研究与应用”(2018E-1803)
超深层油气藏开发关键技术研究与应用(2023ZZ14-03)
国家自然科学基金项目(42102156)
中国地质大学(武汉)“地大学者”人才岗位科研启动经费项目(2022046)

评论

PDF(7698 KB)

Accesses

Citation

Detail

段落导航
相关文章

/