基于CT试验的黔北凤冈地区牛蹄塘组含方解石脉页岩的力学行为研究

邬忠虎, 孟祥瑞, 蓝宝锋, 刘敬寿, 巩磊, 杨玉翰

PDF(10828 KB)
PDF(10828 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (5) : 117-129. DOI: 10.13745/j.esf.sf.2024.6.15
页岩储层裂缝研究

基于CT试验的黔北凤冈地区牛蹄塘组含方解石脉页岩的力学行为研究

作者信息 +

Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests

Author information +
History +

摘要

通过黔北地区牛蹄塘组页岩的岩心观察显示,方解石脉作为天然裂缝的充填物,并在很大程度上影响着页岩的破坏模式,研究含方解石脉页岩的破坏特性对水力压裂过程中裂缝的起裂、扩展行为的预测与工程设计有重要意义。为揭示方解石脉对页岩力学特性和破裂特征的影响,进行0°、15°、30°、45°、60°、75°和90°7种倾角的单轴压缩和声发射试验,并结合CT扫描技术、有限元计算,构建了三维细观数值模型,讨论不同角度方解石脉对页岩的细观破坏过程和力学性能的影响,分析页岩微裂纹的时空演化规律。结果表明:(1)不同方解石脉角度页岩的声发射和应力-应变曲线形态变化基本相同,均经历压密阶段、弹性阶段、屈服阶段和峰后破坏阶段等4个阶段,各阶段区分明显,特征强度的变化曲线整体呈“U”形,变化程度不断加快,θ为75°时为最低值;(2)方解石脉显著影响页岩的破坏模式,随着角度的提高,由劈裂破坏转变为劈裂型剪切破坏再到剪切滑移破坏,最终变为劈裂张拉破坏;(3)重构的三维模型和物理试验的表现较为一致,并且能够观察到页岩内部和表面裂纹扩展与贯通过程,声发射的空间分布反映了不同阶段下的压缩、张拉和剪切破坏的单元类型,从微观角度揭示了含方解石页岩的破裂机制;(4)页岩的宏观力学特征同时受方解石和基质的影响,体现了明显的各向异性特征,方解石角度越高,对滑移导向作用越强,试件的力学性能越弱。

Abstract

Core observations of shales from the Niutitang Formation in the northern Qianbei region show that calcite veins often act as natural fracture fillers and largely influence the shale damage patterns. The damage characteristics of calcite vein-bearing shales is important for the prediction of fracture initiation and extension behavior during hydraulic fracturing and for the engineering design. In order to reveal the influence of calcite veins on the mechanical properties and fracture characteristics of shale, uniaxial compression and acoustic emission tests are conducted at seven inclination angles of 0° to 90° in 15° increment. Combined with CT scanning technology and finite element calculations, a three-dimensional (3D) microscopic numerical model is constructed. The effects of calcite vein angle on the fine-scale shale damage process as well as shale mechanical properties are discussed, and the spatiotemporal evolution of shale microcracks are analyzed. The results show that (1) under different calcite vein angles the shale acoustic emission and stress-strain curves show similar curve shape changes, in four stages, namely compression-density, elasticity, yielding, and post-peak damage, with obvious distinctions between stages. The change curve of the characteristic intensity is “U”-shaped with a local minimum at θ of 75°. (2) Calcite veins significantly affect the damage mode: As the vein angle decreases, the damage mode changes from cleavage to cleavage-type shear, to shear-slip, and finally to cleavage-tension. (3) The reconstructed 3D model is largely consistent with physical testing data, providing insights into the process of crack expansion and penetration at shale’s interior and surface. The spatial distribution of acoustic emission reflects the compression, tension, and shear damage types at different stages, revealing the fracture mechanism of calcite-containing shale from the microscopic point of view. (4) Calcite and matrix simulatineously and anisotropically affect the macroscopic mechanical properties of shale: The higher the calcite vein angle, the stronger its slip guidance effect, and the weaker the mechanical properties of the specimens.

关键词

页岩 / 方解石 / 各向异性 / 三维重构 / 黔北地区

Key words

shale / calcite / anisotropy / three-dimensional reconstruction / northern Guizhou

中图分类号

P313.1;P584;TE122.2

引用本文

导出引用
邬忠虎 , 孟祥瑞 , 蓝宝锋 , . 基于CT试验的黔北凤冈地区牛蹄塘组含方解石脉页岩的力学行为研究. 地学前缘. 2024, 31(5): 117-129 https://doi.org/10.13745/j.esf.sf.2024.6.15
Zhonghu WU, Xiangrui MENG, Baofeng LAN, et al. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests[J]. Earth Science Frontiers. 2024, 31(5): 117-129 https://doi.org/10.13745/j.esf.sf.2024.6.15

参考文献

[1]
张同伟, 罗欢, 孟康. 我国南方不同地区寒武系页岩含气性差异主控因素探讨[J]. 地学前缘, 2023, 30(3): 1-13.
[2]
聂海宽, 李沛, 党伟, 等. 深层页岩气富集特征与攻关方向: 以四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2022, 49(4): 1-12.
[3]
马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
[4]
王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55.
[5]
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
[6]
邱振, 邹才能, 王红岩, 等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[7]
LAI J, LIU B C, LI H B, et al. Bedding parallel fractures in fine-grained sedimentary rocks: recognition, formation mechanisms, and prediction using well log[J]. Petroleum Science, 2022, 19(2): 554-569.
[8]
LI C B, ZOU B B, ZHOU H W, et al. Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(4): 98.
[9]
WANG J, XIE H P, LI C B. Anisotropic failure behaviour and breakdown pressure interpretation of hydraulic fracturing experiments on shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104748.
[10]
ZHAI H Y, CHANG X, ZHU W, et al. Study on anisotropy of Longmaxi shale using hydraulic fracturing experiment[J]. Science China Earth Sciences, 2021, 64(2): 260-277.
[11]
GUO P, LI X, LI S D, et al. Quantitative analysis of anisotropy effect on hydrofracturing efficiency and process in shale using X-ray computed tomography and acoustic emission[J]. Rock Mechanics and Rock Engineering, 2021, 54(11): 5715-5730.
[12]
GUPTA N, MISHRA B. Experimental investigation of the influence of bedding planes and differential stress on microcrack propagation in shale using X-ray CT scan[J]. Geotechnical and Geological Engineering, 2021, 39(1): 213-236.
[13]
LEI B, ZUO J P, LIU H Y, et al. Experimental and numerical investigation on shale fracture behavior with different bedding properties[J]. Engineering Fracture Mechanics, 2021, 247: 107639.
[14]
LUO N, FAN X R, CAO X L, et al. Dynamic mechanical properties and constitutive model of shale with different bedding under triaxial impact test[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110758.
[15]
王兴渝, 朱哲明, 邱豪, 等. 冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究[J]. 岩石力学与工程学报, 2019, 38(8): 1542-1556.
[16]
杜佰松, 朱光有, 刘舒飞, 等. 浅析影响方解石生长和溶解的动力学因素及机制[J]. 地学前缘, 2023, 30(4): 335-351.
[17]
崔悦, 李熙喆, 郭伟, 等. 川南深层奥陶系五峰组: 志留系龙马溪组页岩裂缝方解石脉对页岩气运移富集的启示[J]. 石油勘探与开发, 2023, 50(6): 1199-1208.
[18]
刘力, 何生, 翟刚毅, 等. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存[J]. 地球科学, 2019, 44(11): 3583-3597.
[19]
ZHANG J G, JIANG Z X, WANG S Q, et al. Bedding-parallel calcite veins as a proxy for shale reservoir quality[J]. Marine and Petroleum Geology, 2021, 127: 104975.
[20]
TANG M T, WU Z H, WANG A L, et al. Study on the microscopic fracture process and acoustic emission of shale based on digital image[J]. Geofluids, 2021, 2021: 8874918.
[21]
宋怀雷, 邬忠虎, 李利平, 等. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报(工学版), 2021, 51(5): 91-99, 106.
[22]
WANG G, QIN X J, HAN D Y, et al. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures[J]. International Journal of Mining Science and Technology, 2021, 31(2): 175-185.
[23]
CHEN X C, WANG G, CHEN H, et al. Analysis of the effects of coal facture shape factor on water seepage based on computerized tomography (CT) 3D reconstructed artificial fractures[J]. Fuel, 2023, 348: 128571.
[24]
WANG G, CHEN X C, WANG S B, et al. Influence of fracture connectivity and shape on water seepage of low-rank coal based on CT 3D reconstruction[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104584.
[25]
郎颖娴, 梁正召, 段东, 等. 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[26]
储超群, 吴顺川, 张诗淮, 等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版), 2020, 51(8): 2232-2246.
[27]
ZUO Y J, HAO Z B, LIU H, et al. Mesoscopic damage evolution characteristics of sandstone with original defects based on micro-ct image and fractal theory[J]. Arabian Journal of Geosciences, 2022, 15(22): 1673.
[28]
周辉, 程广坦, 朱勇, 等. 基于三维扫描和三维雕刻技术的岩石结构面原状重构方法及其力学特性[J]. 岩土力学, 2018, 39(2): 417-425.
[29]
李英杰, 张亮, 王炳乾, 等. 基于CT扫描和数字体相关法的页岩各向异性三维变形场特征研究[J]. 岩土力学, 2023, 44(增刊1): 134-144.
[30]
WU Z H, ZUO Y J, WANG S Y, et al. Numerical simulation and fractal analysis of mesoscopic scale failure in shale using digital images[J]. Journal of Petroleum Science and Engineering, 2016, 145: 592-599.
[31]
殷鹏飞, 杨圣奇, 高峰, 等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报, 2023, 40(1): 164-173, 183.
[32]
马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释: 以四川盆地志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2017, 44(6): 974-981.
[33]
侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学, 2016, 37(6): 1603-1612.
[34]
张树文, 鲜学福, 周军平, 等. 基于巴西劈裂试验的页岩声发射与能量分布特征研究[J]. 煤炭学报, 2017, 42(增刊2): 346-353.
[35]
LU J, HUANG G, GAO H, et al. Mechanical properties of layered composite coal-rock subjected to true triaxial stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(9): 4117-4138.
[36]
HENG S, LI X Z, LIU X, et al. Experimental study on the mechanical properties of bedding planes in shale - ScienceDirect[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103161.
[37]
崔恒涛, 邬忠虎, 娄义黎, 等. 基于微观尺度的页岩损伤破裂数值试验[J]. 煤田地质与勘探, 2020, 48(5): 137-143.

基金

国家自然科学基金项目“黔北下寒武统页岩多期裂缝形成机理及分布预测模型研究”(52104080)
贵州省科技计划项目“贵州省页岩气效益开发关键技术及工程试验”(黔科合战略找矿[2022]ZD005)
贵州省优秀青年科技人才项目(YQK[2023]012)

评论

PDF(10828 KB)

Accesses

Citation

Detail

段落导航
相关文章

/