
海底氢能探测与开采技术展望
姜兆霞, 李三忠, 索艳慧, 吴立新
海底氢能探测与开采技术展望
Prospects for submarine hydrogen exploration and extraction technologies
在目前双碳政策背景下,国家对氢能等清洁能源的需求日益增长。橄榄岩蛇纹石化是海底广泛存在的水岩相互作用之一,氢气是该过程的主要产物,是海底氢气能源(简称海底氢能)的主要形成途径。因此,深海洋壳储存了极具前景的氢能,是缓解当前双碳压力的重要突破口,是发展新质生产力的重要引擎。但是目前全球对海底氢能的探测与开采技术仍处空白,是未来海底能源探测的突破口和生长点。本文基于海底氢能的形成原理与分布特征,系统梳理了可用于海底氢能的探测技术和开采方法,提出通过海底多波束测深、磁力测量、重力测量、多分量地震勘探等综合地球物理探测方法,有望对海底可能的氢能储层进行探测。同时,借助水力压裂和微波加热等方法可对储层中的氢气进行开采。但是,囿于人们对海底氢能认知的匮乏和氢气自身储存和运移的特殊性,仍需要开发专门针对海底氢能的探测和开采技术,在该方向提前布局,为海底氢能开采利用提供技术支撑,同时也会带动和促进不同领域技术创新的革命性突破。
In the current context of the dual-carbon policy, the national demand for clean energy, such as hydrogen, is growing significantly. Serpentinization of peridotite is one of the most widespread water-rock interactions on the seafloor, and hydrogen gas, a primary product of this process, serves as a crucial pathway for the formation of marine hydrogen energy. Therefore, the deep oceanic crust holds highly promising hydrogen energy reserves, representing a vital breakthrough for alleviating current dual-carbon pressures and driving the development of new productive capacities. However, global technologies for detecting and extracting marine hydrogen energy are still in their infancy, presenting a significant opportunity for future seafloor energy exploration and growth. This paper systematically reviews the formation principles and distribution characteristics of marine hydrogen energy, outlining potential detection technologies and extraction methods. We propose that comprehensive geophysical exploration methods, such as multibeam bathymetry, magnetic surveys, gravity measurements, and multi-component seismic exploration, hold promise for detecting potential hydrogen reservoirs on the seafloor. Additionally, methods like hydraulic fracturing and microwave heating could be utilized for extracting hydrogen from these reservoirs. However, due to the limited understanding of marine hydrogen energy and the unique challenges associated with hydrogen storage and transport, there is a pressing need to develop specialized detection and extraction technologies tailored to marine hydrogen energy. Advance layout in this direction will provide the necessary technical support for the exploitation and utilization of marine hydrogen energy and spur revolutionary breakthroughs in various technological fields.
海底氢能 / 蛇纹石化 / 磁铁矿 / 氢气 / 海底多分量地震
submarine hydrogen energy / serpentinization / magnetite / hydrogen gas / submarine multi-component seismic
TK91;P624;P631
[1] |
|
[2] |
金之钧, 王璐. 自然界有氢气藏吗?[J]. 地球科学, 2022, 47(10): 3858-3859.
|
[3] |
|
[4] |
LOLLAR,
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程: 从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(04): 1063-1080.
|
[10] |
|
[11] |
[12] |
汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩石化研究进展评述[J]. 地球科学进展, 2010, 25(6): 605-616.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
梅赛, 杨慧良, 孙治雷, 等. 冷泉羽状流多波束水体声学探测技术与应用[J]. 海洋地质与第四纪地质, 2021, 41(4): 222-231.
|
[25] |
|
[26] |
|
[27] |
黄瑞芳, 孙卫东, 丁兴. 蛇纹石化的研究进展[J]. 地质学报, 2013, 87(增刊1): 340-341.
|
[28] |
张刚. 油气重磁异常识别及提取方法研究[D]. 北京: 中国石油大学, 2011.
|
[29] |
徐桂芬, 赵文举, 何展翔, 等. 时移微重力监测技术在油气田开发中的应用[C]// 中国石油学会2017年物探技术研讨会论文集. 北京: 中国石油学会物探专业委员会, 2017: 775-777.
|
[30] |
|
[31] |
明君, 邹振, 夏同星, 等. 大规模气云区成因分析: 以渤海湾A油田为例[J]. 石油地球物理勘探, 2019, 54(2): 312-319.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
胡刚, 赵铁虎, 章雪挺, 等. 天然气水合物赋存区近海底环境原位观测系统集成与实现[J]. 海洋地质前沿, 2015, 31(6): 30-35.
|
[38] |
董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 195-203.
|
[39] |
|
[40] |
|
/
〈 |
|
〉 |