矿物组分识别与智能解释在不同岩性之间的信息共享与迁移学习

刘烨, 韩雨伯, 朱文瑞

PDF(13833 KB)
PDF(13833 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (4) : 95-111. DOI: 10.13745/j.esf.sf.2024.5.8
深度学习与图像识别

矿物组分识别与智能解释在不同岩性之间的信息共享与迁移学习

作者信息 +

Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies

Author information +
History +

摘要

在地球科学领域,岩石微观观测数据的采集过程繁琐且效率低下,这不仅增加了研究成本,降低了可靠性,同时也限制了数据的开源共享。此外,由于岩性的多样性和观测手段的差异,单一数据集的规模通常较小,这对于依赖大规模数据集的深度学习框架而言是一大挑战。为此,本研究探索迁移学习如何促进不同岩性间的信息共享,并通过此机制提高矿物组分识别与智能解释任务的模型性能。通过采集不同区域、岩性、矿物组分和偏光模式下的铸体薄片样本,本文深入研究了深度学习模型在不同观测对象和手段下的迁移学习机制,并聚焦于探索地质信息的深层表征。研究成果不但揭示了迁移学习在促进地质学领域信息共享与模型性能提升中的关键作用,还为自动化和智能化地质认识融合奠定了基础。实验结果显示,通过迁移学习,本文模型在智能解释任务中的准确率显著提高,从53.3%提高至98.73%,而在矿物组分识别任务中,准确率也实现了近10%的提升。这些成果证明了迁移学习在地质学领域内解决实际问题和提高模型泛化能力、性能和稳定性方面的巨大潜力。

Abstract

In earth sciences the rock microscopic data collection process is both labor-intensive and inefficient, which have a negative impact on research cost/reliability and open data sharing. Additionally, rock heterogeneity and variation in data collection methods typically result in small-scale datasets—this poses a significant challenge to deep learning frameworks that rely on large-scale datasets for training. To address this issue, we investigate how transfer learning can facilitate information sharing across different rock types and enhance model performance in tasks such as mineral identification and intelligent interpretation. By compiling thin section image datasets, taking in diverse rock sampling regions, rock types, mineral compositions, viewed under varying viewing modes, we delve into the mechanisms of transfer learning across different observational targets and methods, focusing on the deep representation of geological information. Our findings not only highlight the pivotal role of transfer learning in promoting information sharing and improving model performance within the field of geosciences, but also lay a foundation for the automatic and intelligent integration of geological insights. According to experimental results, transfer learning led to significant accuracy improvement, from 53.3% to 98.73%, in intelligent interpretation task, and a nearly 10% improvement in mineral identification task. These results convincingly showcase the great potential of transfer learning in addressing practical problems in geology as well as enhancing model generalization, model performance, and model stability.

关键词

迁移学习 / 薄片矿物组分识别 / 薄片图像智能解释 / 地质认识融合

Key words

transfer learning / thin section mineral composition identification / thin section image intelligent interpretation / geological understanding integration

中图分类号

P628.5;P575;TP18

引用本文

导出引用
刘烨 , 韩雨伯 , 朱文瑞. 矿物组分识别与智能解释在不同岩性之间的信息共享与迁移学习. 地学前缘. 2024, 31(4): 95-111 https://doi.org/10.13745/j.esf.sf.2024.5.8
Ye LIU, Yubo HAN, Wenrui ZHU. Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies[J]. Earth Science Frontiers. 2024, 31(4): 95-111 https://doi.org/10.13745/j.esf.sf.2024.5.8

参考文献

[1]
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
[2]
徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252.
[3]
程国建, 郭文惠, 范鹏召. 基于卷积神经网络的岩石图像分类[J]. 西安石油大学学报(自然科学版), 2017, 32(4): 116-122.
[4]
白林, 魏昕, 刘禹, 等. 基于VGG模型的岩石薄片图像识别[J]. 地质通报, 2019, 38(12): 2053-2058.
[5]
谭永健, 田苗, 徐德馨, 等. 基于Xception网络的岩石图像分类识别研究[J]. 地理与地理信息科学, 2022, 38(3): 17-22.
[6]
POLAT Ö, POLAT A, EKICI T. Automatic classification of volcanic rocks from thin section images using transfer learning networks[J]. Neural Computing and Applications, 2021, 33(18): 11531-11540.
[7]
姜枫. 基于语义识别的砂岩薄片图像分割方法研究[D]. 南京: 南京大学, 2018.
[8]
QIAO W D, ZHAO Y F, XU Y, et al. Deep learning-based pixel-level rock fragment recognition during tunnel excavation using instance segmentation model[J]. Tunnelling and Underground Space Technology, 2021, 115: 104072.
[9]
YIN B Q, HU Q H, ZHU Y Y, et al. Paw-Net: stacking ensemble deep learning for segmenting scanning electron microscopy images of fine-grained shale samples[J]. Computers and Geosciences, 2022, 168: 105218.
[10]
刘烨, 吕锦涛. 基于超像素与半监督的岩石图像分割与识别[J]. 工程科学与技术, 2023, 55(2): 171-183.
[11]
廖启俊. 基于递归网络的图文标注算法研究[D]. 广州: 华南理工大学, 2017.
[12]
SHI Y L, YANG W Z, DU H X, et al. Overview of image captions based on deep learning[J]. Acta Electonica Sinica, 2021, 49(10): 2048-2060.
[13]
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10), 1345-1359.
[14]
SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions On Medical Imaging, 2016, 35(5): 1285-1298.
[15]
TAN C, SUN F, KONG T, et al. A survey on deep transfer learning: with an emphasis on domain adaptation techniques[C]// Artificial neural networks and machine learning-ICANN 2018: 27th international conference on Artificial Neural Networks. Rhodes: Springer International Publishing, 2018: 270-279.
[16]
TSCHANNEN V, DELESCLUSE M, RODRIGUEZ M, et al. Facies classification from well logs using an inception convolutional network[EB/OL]. (2017-06-02)[2024-01-15]. https://doi.org/10.48550/arXiv.1706.00613.
[17]
PIRES DE LIMA R, SURIAMIN F, MARFURT K J, et al. Convolutional neural networks as aid in core lithofacies classification[J]. Interpretation, 2019, 7(3): SF27-SF40.
[18]
KOESHIDAYATULLAH A, MORSILLI M, LEHRMANN D J, et al. Fully automated carbonate petrography using deep convolutional neural networks[J]. Marine and Petroleum Geology, 2020, 122: 104687.
[19]
DAWSON H L, DUBRULE O, JOHN C M. Impact of dataset size and convolutional neural network architecture on transfer learning for carbonate rock classification[J]. Computers and Geosciences, 2023, 171: 105284.
[20]
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[21]
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04)[2024-01-16]. https://doi.org/10.48550/arXiv.1409.1556.
[22]
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
[23]
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2024-01-21]. https://doi.org/10.48550/arXiv.1412.3555.

基金

国家自然科学基金项目(52004214)
陕西省自然科学基金项目(2022JM-301)
西安石油大学研究生创新与实践能力培养计划项目(YCS22212030)

评论

PDF(13833 KB)

Accesses

Citation

Detail

段落导航
相关文章

/