沉水植物对岩溶碳汇稳定性影响研究

孙彩云, 郑冰清, 李俊, 符洪铭, 孙荣卿, 刘红豪, 廖祖莹, 江红生, 吴振斌, 夏世斌, 王培

PDF(2120 KB)
PDF(2120 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (5) : 430-439. DOI: 10.13745/j.esf.sf.2024.2.9
“综合生态系统碳循环与碳中和”专栏

沉水植物对岩溶碳汇稳定性影响研究

作者信息 +

Study on the effect of submerged plants on the stability of karst carbon sink

Author information +
History +

摘要

岩溶碳汇是实现碳中和的重要手段,其稳定性是亟待解决的关键科学问题。地球上每年约45%的光合作用发生在水环境中,而岩溶区沉水植物如何影响岩溶碳汇稳定性仍不明确。以3条岩溶区河流中的沉水植物为研究对象,利用样方法、pH-drift技术和元素化学计量学,从定性和定量角度开展了沉水植物对岩溶碳汇稳定性的影响研究。结果表明:ZDR中沉水植物有8种,CTR中沉水植物有5种,HXR中沉水植物有7种,Shannon-Wiener多样性指数和Simpson优势度指数的趋势均为ZDR>HXR>CTR。在3条河流中沉水植物的优势种为苦草、海菜花、竹叶眼子菜和黑藻,且均具有利用$\mathrm{HCO}_{3}^{-}$的能力。ZDR、HXR和CTR中沉水植物的年固碳量分别为8.56×103、4.83×103 和3.88×103 g·m-2·a-1,平均值为5.76×103 g·m-2·a-1,分别是草地的37.65倍和人工林的40.56倍。3条河流中沉水植物多样性越高,其固碳量也越高。总的来说,在岩溶水生态系统中沉水植物发挥着碳泵的作用,进而提高了岩溶碳汇的稳定性。

Abstract

Karst carbon sinks are an important means of achieving carbon neutrality, and their stability is a key scientific issue that needs to be addressed. Approximately 45% of annual photosynthesis on Earth occurs in aquatic environments, yet how submerged plants in karst areas affect the stability of karst carbon sinks remains unknown. This study focused on submerged plants in three karst rivers. We employed quadrat sampling, pH-drift technology, and elemental stoichiometry to qualitatively and quantitatively examine the effects of submerged plants on the stability of karst carbon sinks. Our results showed that there were 8, 5, and 7 species of submerged plants in the ZDR, CTR, and HXR, respectively. The Shannon-Wiener diversity index and Simpson dominance index ranked as ZDR>HXR>CTR. In the three karst rivers, Vallisneria natans, Ottelia acuminata, Potamogeton wrightii, and Hydrilla verticillata were the dominant species, all of which had the ability to utilize $\mathrm{HCO}_{3}^{-}$. The annual carbon sequestration rates of submerged plants in the ZDR, HXR, and CTR were 8.56×103 g·m-2·a-1, 4.83×103 g·m-2·a-1, and 3.88×103 g·m-2·a-1, respectively, with an average of 5.76×103 g·m-2·a-1, which are 37.65 and 40.56 times higher than those of grasslands and man-made forests, respectively. The higher the diversity of submerged plants in rivers, the higher the carbon sequestration. Overall, submerged plants play a crucial carbon pump role in karst aquatic ecosystems, thereby enhancing the stability of karst carbon sink.

关键词

岩溶碳汇 / 沉水植物固碳 / 植物多样性 / 优势种植物 / 河流类型

Key words

karst carbon sink / carbon sequestration by submerged plants / plant diversity / dominant species of plants / river types

中图分类号

X173

引用本文

导出引用
孙彩云 , 郑冰清 , 李俊 , . 沉水植物对岩溶碳汇稳定性影响研究. 地学前缘. 2024, 31(5): 430-439 https://doi.org/10.13745/j.esf.sf.2024.2.9
Caiyun SUN, Bingqing ZHENG, Jun LI, et al. Study on the effect of submerged plants on the stability of karst carbon sink[J]. Earth Science Frontiers. 2024, 31(5): 430-439 https://doi.org/10.13745/j.esf.sf.2024.2.9

参考文献

[1]
袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6.
[2]
LARASON C. An unsung carbon sink[J]. Science, 2011, 334: 886-887.
[3]
章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371.
[4]
CAO J H, WU X, HUANG F, et al. Global significance of the carbon cycle in the Karst dynamic system: evidence from geological and ecological processes[J]. China Geology, 2018, 1(1): 17-27.
[5]
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
[6]
CURL R L. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069): 655.
[7]
HORWATH W R. The Phanerozoic carbon cycle: CO2 and O2[J]. Vadose Zone Journal, 2006, 5(4): 1155-1156.
[8]
黄奇波. 北方半干旱岩溶区岩溶碳汇过程及效应研究[D]. 武汉: 中国地质大学(武汉), 2019.
[9]
姚锐. 中国岩石风化对大气CO2的汇效应研究[D]. 长沙: 中南大学, 2003.
[10]
BERNER R A. The long-term carbon cycle, fossil fuels and atmospheric composition[J]. Nature, 2003, 426(6964): 323-326.
[11]
BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
[12]
LIU Z H. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2/3): 95-102.
[13]
YANG M X, LIU Z H, SUN H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73: 132-141.
[14]
CHEN B, YANG R, LIU Z H, et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site, China: implications for the carbonate weathering-related carbon sink[J]. Chemical Geology, 2017, 456: 58-71.
[15]
WANG P, HU G, CAO J H. Stable carbon isotopic composition of submerged plants living in Karst water and its eco-environmental importance[J]. Aquatic Botany, 2017, 140: 78-83.
[16]
WANG P, HU Q J, YANG H, et al. Preliminary study on the utilization of Ca2+ and $\mathrm{HCO}_{3}^{-}$ in Karst water by different sources of Chlorella vulgaris[J]. Carbonates and Evaporites, 2014, 29(2): 203-210.
[17]
FARQUHAR G D, LLOYD J, TAYLOR J A, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature, 1993, 363: 439-443.
[18]
CIAIS P, DENNING A S, TANS P P, et al. A three-dimensional synthesis study of δ18O in atmospheric CO2: 1.Surface fluxes[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D5): 5857-5872.
[19]
FANG L, WU Y Y. Bicarbonate uptake experiment show potential Karst carbon sinks transformation into carbon sequestration by terrestrial higher plants[J]. Journal of Plant Interactions, 2022, 17(1): 419-426.
[20]
SERRANO O, GÓMEZ-LÓPEZ D I, SÁNCHEZ-VALENCIA L, et al. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean[J]. Scientific Reports, 2021, 11(1): 11067.
[21]
HAMILTON S E, FRIESS D A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012[J]. Nature Climate Change, 2018, 8: 240-244.
[22]
BAI Y F, COTRUFO M F. Grassland soil carbon sequestration: current understanding, challenges, and solutions[J]. Science, 2022, 377(6606): 603-608.
[23]
BELLASSEN V, LUYSSAERT S. Carbon sequestration: managing forests in uncertain times[J]. Nature, 2014, 506(7487): 153-155.
[24]
FERNÁNDEZ P A, HURD C L, ROLEDA M Y. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH[J]. Journal of Phycology, 2014, 50(6): 998-1008.
[25]
NAEEM S, HÅKANSSON K, LAWTON J H, et al. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos, 1996, 76(2): 259.
[26]
MITTELBACH G G, STEINER C F, SCHEINER S M, et al. What is the observed relationship between species richness and productivity?[J]. Ecology, 2001, 82(9): 2381.
[27]
SONKOLY J, KELEMEN A, VALKÓ O, et al. Both mass ratio effects and community diversity drive biomass production in a grassland experiment[J]. Scientific Reports, 2019, 9(1): 1848.
[28]
AUGUSTO L, BOČA A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications, 2022, 13(1): 1097.
[29]
CHEN X L, TAYLOR A R, REICH P B, et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual[J]. Nature, 2023, 618(7963): 94-101.
[30]
YANG Y, TILMAN D, FUREY G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019, 10(1): 718.
[31]
LI Q, SHI X Y, ZHAO Z Q, et al. Ecological restoration in the source region of Lancang River: based on the relationship of plant diversity, stability and environmental factors[J]. Ecological Engineering, 2022, 180: 106649.
[32]
PIELOU E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144.
[33]
LUKÁCS B A, SRAMKÓ G, MOLNÁR V A. Plant diversity and conservation value of continental temporary pools[J]. Biological Conservation, 2013, 158: 393-400.
[34]
JIANG H S, JIN Q, LI P P, et al. Different mechanisms of bicarbonate use affect carbon isotope composition in Ottelia guayangensis and Vallisneria denseserrulata in a Karst stream[J]. Aquatic Botany, 2021, 168: 103310.
[35]
肖月娥, 陈开宁, 戴新宾, 等. 太湖两种大型沉水植物无机碳利用效率差异及其机理[J]. 植物生态学报, 2007, 31(3): 490-496.
[36]
RAVEN J A. Exogenous inorganic carbon sources in plant photosynthesis[J]. Biological Reviews, 1970, 45(2): 167-220.
[37]
BLACK M A, MABERLY S C, SPENCE D H N. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytologist, 1981, 89(4): 557-568.
[38]
SMITH F A, WALKER N A. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and $\mathrm{HCO}_{3}^{-}$ and to carbon isotopic discrimination[J]. New Phytologist, 1980, 86(3): 245-259.
[39]
刘玲玲. 三种沉水植物无机碳利用机制研究[D]. 武汉: 华中师范大学, 2011.
[40]
KLAVSEN S K, MADSEN T V, MABERLY S C. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review[J]. Photosynthesis Research, 2011, 109(1/2/3): 269-279.
[41]
RASCIO N. The underwater life of secondarily aquatic plants: some problems and solutions[J]. Critical Reviews in Plant Sciences, 2002, 21(4): 401-427.
[42]
ZHANG Y Z, YIN L Y, JIANG H S, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosynthesis Research, 2014, 121(2/3): 285-297.
[43]
POSCHENRIEDER C, FERNÁNDEZ J A, RUBIO L, et al. Transport and use of bicarbonate in plants: current knowledge and challenges ahead[J]. International Journal of Molecular Sciences, 2018, 19(5): 1352.
[44]
熊志斌, 王万海, 玉屏, 等. 板寨地下河大型水生植物调查及其固碳评价[J]. 热带地理, 2018, 38(4): 557-564.
[45]
CHAPIN F S III, MATSON P A, VITOUSEK P M. Carbon inputs to ecosystems[M]//Principles of terrestrial ecosystem ecology. New York: Springer, 2011: 123-156.
[46]
余俊琪, 白冰, 李光超, 等. 岩溶地下水补给河流沉积物理化性质及有机碳来源解析[J]. 水生生物学报, 2022, 46(12): 1900-1908.
[47]
LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412(6842): 72-76.
[48]
ROSCHER C, TEMPERTON V M, SCHERER-LORENZEN M, et al. Overyielding in experimental grassland communities-irrespective of species pool or spatial scale[J]. Ecology Letters, 2005, 8(4): 419-429.
[49]
BESSLER H, TEMPERTON V M, ROSCHER C, et al. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs[J]. Ecology, 2009, 90(6): 1520-1530.
[50]
ZHOU Z, SUN O J, HUANG J, et al. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem[J]. Functional Ecology, 2006, 20(5): 753-762.
[51]
ZHANG J, EKBLAD A, SIGURDSSON B D, et al. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-Arctic grassland[J]. Soil Biology and Biochemistry, 2020, 147: 107826.
[52]
LI B B, GAO G Y, LUO Y Q, et al. Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: a synthesis in the China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2023, 333: 109419.
[53]
JOHNSON D, VACHON J, BRITTON A J, et al. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs[J]. The New Phytologist, 2011, 190(3): 740-749.
[54]
WILSEY B J, POLLEY H W. Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation[J]. Ecology Letters, 2002, 5(5): 676-684.
[55]
KIRWAN L, LÜSCHER A, SEBASTIÀ M T, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites[J]. Journal of Ecology, 2007, 95(3): 530-539.
[56]
NIJS I, ROY J. How important are species richness, species evenness and interspecific differences to productivity? A mathematical model[J]. Oikos, 2000, 88(1): 57-66.
[57]
MULDER C P H, BAZELEY-WHITE E, DIMITRAKOPOULOS P G, et al. Species evenness and productivity in experimental plant communities[J]. Oikos, 2004, 107(1): 50-63.
[58]
HILLEBRAND H, BENNETT D M, CADOTTE M W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes[J]. Ecology, 2008, 89(6): 1510-1520.

基金

国家自然科学基金项目(41807205)
国家自然科学基金项目(42172285)
中国地质调查局云贵高原湖区湖泊调查项目(DD20230512)
自然资源部自然生态系统碳汇工程技术创新中心科创课题([2023]10-2023-03)
广西重点研发计划项目(2023AB06025)
中国科学院乡村振兴项目(KFJ-XCZX-202303)
桂林市科学研究与技术开发计划项目(2020010905)
自然资源部自然资源科技战略研究项目(2023-ZL-23)

评论

PDF(2120 KB)

Accesses

Citation

Detail

段落导航
相关文章

/