岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响

黄思宇, 蒲俊兵, 潘谋成, 李建鸿, 张陶

PDF(1932 KB)
PDF(1932 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (5) : 387-396. DOI: 10.13745/j.esf.sf.2024.2.7
“综合生态系统碳循环与碳中和”专栏

岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响

作者信息 +

Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir

Author information +
History +

摘要

岩溶水生环境富含$\mathrm{HCO}_{3}^{-}$,有利于内源藻类发生生物碳泵作用,形成大量藻源有机质沉积到库底。丰富的藻源性有机质在沉积物中发生矿化作用,影响有机质埋藏过程,影响岩溶水生环境碳循环过程和碳汇潜力。为探究藻源性有机质对矿化作用的影响和岩溶水生环境碳循环稳定性的影响,以岩溶地下水补给型水库(广西大龙洞水库)为研究对象,初步分析从上游到下游不同区域藻源有机质对表层沉积物有机质矿化过程的影响。结果表明:大龙洞水库有机质主要来源为内源藻类(20.9%~65%)和外源土壤(11.8%~53.4%)且具有一定的空间差异,水库上游以土壤来源为主,下游以藻类来源为主。大龙洞水库表层沉积物矿化过程在空间上呈现上游潜在矿化量高于下游潜在矿化量,产生差异的主要因素是在岩溶高溶解无机碳水环境中,藻源性有机碳对微生物矿化过程具有抑制性,降低矿化强度。在生物碳泵作用和无机碳保护下,以藻源性来源为主的岩溶水库表层沉积物有机碳潜在埋藏总量略高于岩溶区土壤的潜在埋藏总量,表明岩溶水库沉积物有着稳定的有机成分积累。

Abstract

In the karst reservoir, there are a lot of $\mathrm{HCO}_{3}^{-}$ in the water column, which can promote algae to function of biological carbon pump and lead the algae organic matter to be deposited under the water column. Meanwhile, algae organic matter is mineralized on the sediment suffer in order to affect the organic matter burial, carbon cycle of karst aquatic environment. To study effect and of algae-derived organic matter source on sediment mineralization, we selected the Dalongdong Reservoir as the object and analyzed carbon cycle stability of karst reservoir aquatic environment. The results revealed that: organic carbon in the surface sediment come from the algae source (20.9%-65%) and soil source (11.8%-53.4%), which organic carbon of algae source was mainly deposited on the downstream and soil source' was on the upstream. The potential mineralization on the upstream was higher than that on the downstream, because the mineralization process of organic carbon was influenced by organic source difference, especially algae-source; with biological carbon pumping effect and inorganic carbon protection, potential burial volume in the surface sediment of karst reservoir was higher than that in the karst soil, which showed that sediment structure in the karst reservoir was stable.

关键词

岩溶水库 / 藻源性有机质 / 矿化过程 / 无机碳保护 / 碳库稳定性

Key words

karst reservoir / algae-derived organic matter / mineralization process / inorganic carbon effect / carbon pool stability

中图分类号

P642.25;Q948

引用本文

导出引用
黄思宇 , 蒲俊兵 , 潘谋成 , . 岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响. 地学前缘. 2024, 31(5): 387-396 https://doi.org/10.13745/j.esf.sf.2024.2.7
Siyu HUANG, Junbing PU, Moucheng PAN, et al. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir[J]. Earth Science Frontiers. 2024, 31(5): 387-396 https://doi.org/10.13745/j.esf.sf.2024.2.7

参考文献

[1]
MAAVARA T, LAUERWALD R, REGNIER P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1): 15347.
[2]
MENDONÇA R, MÜLLER R A, CLOW D, et al. Organic carbon burial in global lakes and reservoirs[J]. Nature Communications, 2017, 8(1): 1694.
[3]
MULHOLLAND P J, ELWOOLD J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle[J]. Tellus, 1982, 34(5): 490-499.
[4]
STALLARD R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257.
[5]
DEAN W E, GORHAM E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26(6): 535.
[6]
FEARNSIDE P M, PUEYO S. Greenhouse-gas emissions from tropical dams[J]. Nature Climate Change, 2012, 2(6): 382-384.
[7]
FEARNSIDE P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases[J]. Environmental Conservation, 1995, 22(1): 7-19.
[8]
BARROS N, COLE J J, TRANVIK L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011, 4: 593-596.
[9]
MULLER M. Hydropower dams can help mitigate the global warming impact of wetlands[J]. Nature, 2019, 566(7744): 315-317.
[10]
MATTHEWS J H. Dam development: value both wetlands and hydropower[J]. Nature, 2019, 568(7750): 33.
[11]
BAO Q, LIU Z H, ZHAO M, et al. Response of OC, TN, and TP deposition mediated by aquatic photosynthetic community structures in shallow karst surface waters under different land uses[J]. Environmental Research, 2023, 223: 115488.
[12]
王培, 曹建华, 李亮, 等. 不同来源小球藻对岩溶水Ca2+、$\mathrm{HCO}_{3}^{-}$利用的初步研究[J]. 水生生物学报, 2013, 37(4): 626-631.
[13]
RAN L S, BUTMAN D E, BATTIN T J, et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change[J]. Nature Communications, 2021, 12(1): 1730.
[14]
BERGGREN M, DEL GIORGIO P A. Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(6): 989-999.
[15]
AMON R M W, BENNER R. Bacterial utilization of different size classes of dissolved organic matter[J]. Limnology and Oceanography, 1996, 41(1): 41-51.
[16]
MUSCARELLA M E, BOOT C M, BROECKLING C D, et al. Resource heterogeneity structures aquatic bacterial communities[J]. The ISME Journal, 2019, 13(9): 2183-2195.
[17]
FORTINO K, HOAK J, WATERS M N. Evidence for positive priming of leaf litter decomposition by contact with eutrophic pond sediments[J]. Hydrobiologia, 2020, 847(1): 137-149.
[18]
STEGEN J C, FREDRICKSON J K, WILKINS M J, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover[J]. Nature Communications, 2016, 7(1): 11237.
[19]
李典鹏, 姚美思, 孙涛, 等. 水位变化对干涸湖底沉积物有机碳矿化的影响[J]. 湖泊科学, 2019, 31(3): 881-890.
[20]
陈默, 张雅庆, 李家轩, 等. 温度对湖泊沉积物中沉水植物残体厌氧分解的影响[J]. 环境科学学报, 2020, 40(8): 3013-3019.
[21]
沈悦, 杜先, 张璐, 等. 藻源性有机质对高原深水湖泊沉积物矿化作用的激发效应[J]. 湖泊科学, 2023, 35(1): 103-119.
[22]
XIA X H, WU Q, ZHU B T, et al. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes[J]. Science of the Total Environment, 2015, 523: 64-73.
[23]
MURI G, WAKEHAM S G. Organic matter and lipids in sediments of Lake Bled (NW Slovenia): source and effect of anoxic and oxic depositional regimes[J]. Organic Geochemistry, 2006, 37(12): 1664-1679.
[24]
MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289-302.
[25]
DUNN R J K, WELSH D T, TEASDALE P R, et al. Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers[J]. Continental Shelf Research, 2008, 28(18): 2535-2549.
[26]
BERTRAND S, STERKEN M, VARGAS-RAMIREZ L, et al. Bulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40°S): implications for paleoenvironmental reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294(1/2): 56-71.
[27]
HUANG S Y, PU J B, CAO J H, et al. Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, South China[J]. Environmental Science and Pollution Research, 2018, 25(9): 8497-511.
[28]
王雯雯, 王书航, 姜霞, 等. 多方法研究呼伦湖表层沉积物有机质的赋存特征及来源[J]. 环境科学研究, 2021, 34(2): 305-318.
[29]
KALFF J. 湖沼学: 内陆水生态系统[M]. 古滨河, 刘正文, 李宽意, 等译. 北京: 高等教育出版社, 2011.
[30]
李飞鹏, 陈蒙蒙, 贾玉宝, 等. 气象因素对封闭浅水湖泊浮游藻类生长和分布影响[J]. 水生态学杂志, 2019, 40(5): 55-62.
[31]
WANG H, ZHANG Z Z, LIANG D F, et al. Separation of wind’s influence on harmful cyanobacterial blooms[J]. Water Research, 2016, 98: 280-292.
[32]
陈敬安, 万国江, 陈振楼, 等. 洱海近代气候变化的化学记录[J]. 地理科学, 2000, 20(1): 83-87.
[33]
WANG W F, LI S L, ZHONG J, et al. Carbonate mineral dissolution and photosynthesis-induced precipitation regulate inorganic carbon cycling along the karst river-reservoir continuum, SW China[J]. Journal of Hydrology, 2022, 615: 128621.
[34]
殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2): 343-351.
[35]
YANG H, MO B Q, ZHOU M X, et al. Effects of plum plantation ages on soil organic carbon mineralization in the karst rocky desertification ecosystem of southwest China[J]. Forests, 2019, 10(12): 1107.
[36]
MUNDA S, BHADURI D, MOHANTY S, et al. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar[J]. Biomass and Bioenergy, 2018, 115: 1-9.
[37]
金相灿, 崔哲, 王圣瑞. 连续淹水培养条件下沉积物和土壤的氮素矿化过程[J]. 土壤通报, 2006, 37(5): 909-915.
[38]
BENNER R, AMON R M W. The size-reactivity continuum of major bioelements in the ocean[J]. Annual Review of Marine Science, 2015, 7: 185-205.
[39]
HOPKINSON C S, BUFFAM I, HOBBIE J, et al. Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability[J]. Biogeochemistry, 1998, 43(3): 211-234.
[40]
XIA F, LIU Z H, ZHAO M, et al. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: evidence from fluorescence[J]. Water Research, 2022, 220: 118723.
[41]
韩翠红, 孙海龙, 魏榆, 等. 喀斯特筑坝河流中生物碳泵效应的碳施肥及对水化学时空变化的影响: 以贵州平寨水库及红枫湖为例[J]. 湖泊科学, 2020, 32(6): 1683-1694.
[42]
HE H B, WANG Y Y T, LIU Z H, et al. Lake metabolic processes and their effects on the carbonate weathering CO2 sink: insights from diel variations in the hydrochemistry of a typical karst lake in SW China[J]. Water Research, 2022, 222: 118907.
[43]
PU J B, LI J H, ZHANG T, et al. Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, South China[J]. Water Research, 2020, 178: 115831.

基金

国家自然科学基金项目(41977166)
国家自然科学基金项目(42407079)
重庆市自然科学基金项目(CSTB2022NSCQ-LZX0022)
广西高校中青年教师科研基础能力提升项目(2021KY0054)
重庆师范大学基金项目(21XRC002)

评论

PDF(1932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/