滇南喀斯特地区不同石漠化程度下优势灌木生物量及分配特征

杨化菊, 李灿锋, 杨克好, 张熙璐, 王传宇, 王兴荣, 何旭, 彭雪峰, 张连凯

PDF(3372 KB)
PDF(3372 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (5) : 440-448. DOI: 10.13745/j.esf.sf.2024.2.11
“综合生态系统碳循环与碳中和”专栏

滇南喀斯特地区不同石漠化程度下优势灌木生物量及分配特征

作者信息 +

Biomass and distribution characteristics of dominant shrubs under varying degrees of rocky desertification in the karst region of southern Yunnan

Author information +
History +

摘要

灌木在喀斯特石漠化区植被恢复过程中具有重要作用,其生物量大小直接决定了石漠化修复与碳收支情况。为探究喀斯特地区优势灌木树种响应石漠化演替的生物量特征及分配格局,以滇南喀斯特地区不同石漠化程度下3种优势灌木树种华西小石积(Osteomeles schwerinae)、沙针(Osyris lanceolata)和车桑子(Dodonaea viscosa)为研究对象,通过分析其冠幅、树高、基径、各器官(根、茎、叶和花/果)生物量和根冠比等响应特征,并构建各器官、地上和总生物量的异速生长模型。结果表明:(1)不同石漠化梯度下,华西小石积和车桑子的平均生物量呈现“倒V”趋势,而沙针则与前两者不同;(2)不同石漠化梯度下,3种优势灌木各器官生物量的分配大小顺序为茎>根>叶>花/果;(3)3种灌木生物量估测效果较好的是线性函数和幂函数,最佳预测变量以基径(D)、基径平方和树高乘积(D2H)为主。本研究为喀斯特石漠化地区的植被恢复和生态系统碳收支功能的研究提供基础数据。

Abstract

Shrubs play a crucial role in vegetation restoration in karst rocky desertification areas, with their biomass directly influencing the restoration of rocky desertification and the carbon budget. To explore the biomass characteristics and distribution patterns of dominant shrub species in response to rocky desertification succession, this study focused on three dominant shrub species in the karst areas of southern Yunnan: Osteomeles schwerinae, Osyris lanceolata and Dodonaea viscosa. We analyzed their crown width, tree height, basal diameter, and the biomass of various organs (roots, stems, leaves, and flowers/fruits). The results showed that: (1) Under different rocky desertification gradients, the average biomass of Osteomeles schwerinae and Dodonaea viscosa exhibited an “inverted V” trend, while Osyris lanceolata showed a different pattern. (2) The order of biomass allocation among the organs of the three dominant shrubs under various rocky desertification gradients was: stems > roots > leaves > flowers/fruits. (3) The biomass estimation for the three shrubs was best described by linear and power functions, with the best predictive variables being basal diameter (D) and the product of basal diameter squared and tree height (D2H). This study provides fundamental data for vegetation restoration and ecosystem carbon budget research in karst rocky desertification areas

关键词

喀斯特 / 石漠化 / 优势灌木 / 生物量 / 异速生长模型 / 分配特征

Key words

karst / rocky desertification / dominant shrubs / biomass / allometric model / distribution characteristics

中图分类号

Q948.11;P642.25;P931.3

引用本文

导出引用
杨化菊 , 李灿锋 , 杨克好 , . 滇南喀斯特地区不同石漠化程度下优势灌木生物量及分配特征. 地学前缘. 2024, 31(5): 440-448 https://doi.org/10.13745/j.esf.sf.2024.2.11
Huaju YANG, Canfeng LI, Kehao YANG, et al. Biomass and distribution characteristics of dominant shrubs under varying degrees of rocky desertification in the karst region of southern Yunnan[J]. Earth Science Frontiers. 2024, 31(5): 440-448 https://doi.org/10.13745/j.esf.sf.2024.2.11

参考文献

[1]
ALI A, YAN E R. Relationships between biodiversity and carbon stocks in forest ecosystems: a systematic literature review[J]. Tropical Ecology, 2017, 58(1): 1-14.
[2]
FANG T, RAO M D, CHEN Q T, et al. Different biomass allocation strategies of geophytes and non-geophytes along an altitude gradient[J]. Ecological Indicators, 2023, 146: 109805.
[3]
BECHTOLD H A, INOUYE R S. Distribution of carbon and nitrogen in sagebrush steppe after six years of nitrogen addition and shrub removal[J]. Journal of Arid Environments, 2007, 71(1): 122-132.
[4]
曾伟生. 国内外灌木生物量模型研究综述[J]. 世界林业研究, 2015, 28(1): 31-36.
[5]
FERRAZ A, SAATCHI S, MALLET C, et al. Lidar detection of individual tree size in tropical forests[J]. Remote Sensing of Environment, 2016, 183: 318-333.
[6]
JUCKER T, CASPERSEN J, CHAVE J, et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes[J]. Global Change Biology, 2017, 23(1): 177-190.
[7]
POORTER H, SACK L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants[J]. Frontiers in Plant Science, 2012, 3: 259.
[8]
詹瑾, 李玉霖, 韩丹, 等. 半干旱沙区3种优势固沙灌木生物量分配及其生态学意义[J]. 中国沙漠, 2020, 40(5): 149-157.
[9]
金文云. 猴耳环人工林地上部分生物量估测及其分配特征研究[D]. 北京: 中国林业科学研究院, 2018.
[10]
FRESCHET G T, VIOLLE C, BOURGET M Y, et al. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress[J]. The New Phytologist, 2018, 219(4): 1338-1352.
[11]
宋同清, 彭晚霞, 杜虎, 等. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 2014, 34(18): 5328-5341.
[12]
赵丽苹. 基于MODIS数据的喀斯特地区石漠化时空演变特征研究[D]. 北京: 中国地质大学(北京), 2015: 68.
[13]
李艳琼. 湘西南石漠化灌丛生物量及养分循环[D]. 长沙: 中南林业科技大学, 2016.
[14]
朱守谦, 魏鲁明, 陈正仁, 等. 茂兰喀斯特森林生物量构成初步研究[J]. 植物生态学报, 1995, 19(4): 358-367.
[15]
刘之洲, 宁晨, 闫文德, 等. 喀斯特地区3种针叶林林分生物量及碳储量研究[J]. 中南林业科技大学学报, 2017, 37(10): 105-111.
[16]
汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462-4472.
[17]
赵磊磊, 雷艳娇, 陈俊松, 等. 云南红河州石漠化演变过程及其综合治理成效[J]. 中国岩溶, 2019, 38(5): 704-712.
[18]
曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11): 106-113.
[19]
曾嘉庆, 祝佳杏, 王微, 等. 重庆喀斯特地区不同干扰生境中山麻杆种群的结构与格局[J]. 生态学杂志, 2016, 35(9): 2313-2320.
[20]
肖林颖, 吴秀芹, 周金星, 等. 岩溶断陷盆地典型县域石漠化治理综合效益评价: 以云南建水县为例[J]. 地球学报, 2021, 42(3): 444-450.
[21]
盛茂银, 刘洋, 熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报, 2013, 33(19): 6303-6313.
[22]
李周, 高凯敏, 刘锦春, 等. 西南喀斯特地区两种草本对干湿交替和N添加的生长响应[J]. 生态学报, 2016, 36(11): 3372-3380.
[23]
程杰, 刘永辉, 田瑛. 宁夏半干旱区柠条锦鸡儿灌木林生长特征[J]. 水土保持通报, 2016, 36(1): 332-336.
[24]
潘睿炽, 王小菁, 李娘辉, 等. 植物生理学[M]. 北京: 高等教育出版社, 2017.
[25]
李莹, 曾晓琳, 游明鸿, 等. 5种川西北沙化地草本植物生态适应策略的差异性[J]. 草业科学, 2016, 33(5): 843-850.
[26]
YANG B J, XUE W Y, YU S C, et al. Effects of stand age on biomass allocation and allometry of quercus acutissima in the central Loess Plateau of China[J]. Forests, 2019, 10-41.
[27]
严月, 朱建军, 张彬, 等. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报, 2017, 41(5): 585-596.
[28]
高玉尧, 刘洋, 许文天, 等. 不同施肥处理对橡胶草生物量积累与分配变化及相关性分析[J]. 分子植物育种, 2018, 16(9): 2979-2986.
[29]
HILBERT D W, CANADELL J. Biomass partitioning and resource allocation of plants from Mediterranean-type ecosystems: possible responses to elevated atmospheric CO2[M]//MORENO J M, OECHEL W C. Global change and mediterranean-type ecosystems. New York: Springer, 1995: 76-101.
[30]
谢宗强, 王杨, 唐志尧, 等. 中国常见灌木生物量模型手册[M]. 北京: 科学出版社, 2018.
[31]
罗永开, 方精云, 胡会峰. 山西芦芽山14种常见灌木生物量模型及生物量分配[J]. 植物生态学报, 2017, 41(1): 115-125.
[32]
LUSK C H. Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny[J]. Functional Ecology, 2004, 18(6): 820-828.
[33]
MA S H, HE F, TIAN D, et al. Variations and determinants of carbon content in plants: a global synthesis[J]. Biogeosciences Discussions, 2018, 15, 693-702.
[34]
CHEN R F, RAN J Z, HUANG H, et al. Life history strategies drive size‐dependent biomass allocation patterns of dryland ephemerals and shrubs[J]. Ecosphere, 2019, 10(4): e02709.
[35]
蒋忠诚, 罗为群, 童立强, 等. 21世纪西南岩溶石漠化演变特点及影响因素[J]. 中国岩溶, 2016, 35(5): 461-468.

基金

中国地质调查局地质调查项目(ZD20220135)

评论

PDF(3372 KB)

Accesses

Citation

Detail

段落导航
相关文章

/