中蒙边界地区金地球化学分布特征及远景区预测

刘汉粮, 王学求, 聂兰仕, 迟清华, 王玮, SHOJIN Davaa, ENKHTAIVAN Altanbagana, 周建, 杜禹德

PDF(6053 KB)
PDF(6053 KB)
地学前缘 ›› 2025, Vol. 32 ›› Issue (1) : 244-256. DOI: 10.13745/j.esf.sf.2024.10.39
中亚成矿带战略资源地球化学调查评价

中蒙边界地区金地球化学分布特征及远景区预测

作者信息 +

Geochemical distribution of gold in the China-Mongolia boundary region and its implications for gold prospecting

Author information +
History +

摘要

中蒙边界地区成矿地质条件优越,是世界上重要的金属成矿省和全球3大斑岩型铜、金、钼成矿带之一,资源潜力巨大,是国内外地学研究和贵金属、三稀资源勘查的热点地区。文章依托中蒙边界1∶1 000 000地球化学填图数据,探讨了汇水域沉积物中金的地球化学参数和区域地球化学分布特征。中蒙边界地区汇水域沉积物金元素含量中位值和平均值分别为0.79×10-9和1.34×10-9;华北陆块和阿尔泰构造带金含量最高,区域浓集系数分别为1.43和1.36,是金的富集优势区。以金含量累积频率85%(1.55×10-9)、92.5%(2.22×10-9)和97.5%(4.03×10-9)划分外、中和内带,共圈定28处地球化学远景区,为该区寻找金等贵金属矿床提供了重要选区。研究填补了中蒙边界地区金地球化学空间分布的空白,为两国边境地区金等贵金属矿床对比提供基础数据。

Abstract

The Sino-Mongolian border area has excellent geological conditions for ore formation and is one of the world’s most important metal mineralization provinces. The area is situated on one of the three largest porphyry copper-gold-molybdenum metallogenic belts in the world with enormous resource potential—it is a hotspot for international and domestic geoscience research and exploration. Based on the 1∶1 million geochemical mapping data of the Sino-Mongolia border areas, the geochemical parameters and regional geochemical distribution of gold in the catchment sediments are discussed in this paper. The median and average gold anomaly values of the catchment sediments were 0.79×10-9 and 1.34×10-9, respectively. The North China Block and the Altay Tectonic Belt had the highest gold contents, with the regional concentration coefficients of 1.43 and 1.36, respectively, consistent with regions faverable for gold enrichment. The outer, middle and inner zones of gold geochemical anomalies were identified according to cumulative frequencies of 85% (1.55×10-9), 92.5% (2.22×10-9) and 97.5% (4.03×10-9), respectively. A total of 28 geochemical prospective areas were delineated, providing important exploration targets for gold and other precious metal deposits in this area. The paper fills the gap in the study of gold geochemical distribution, and provides important data for comparing precious metal deposits in the Sino-Mongolia border area.

关键词

/ 地球化学分布 / 地球化学填图 / 中蒙边界地区

Key words

gold / geochemical distribution / geochemical mapping / Sino-Mongolia border area

中图分类号

P618.51;P632;P595

引用本文

导出引用
刘汉粮 , 王学求 , 聂兰仕 , . 中蒙边界地区金地球化学分布特征及远景区预测. 地学前缘. 2025, 32(1): 244-256 https://doi.org/10.13745/j.esf.sf.2024.10.39
Hanliang LIU, Xueqiu WANG, Lanshi NIE, et al. Geochemical distribution of gold in the China-Mongolia boundary region and its implications for gold prospecting[J]. Earth Science Frontiers. 2025, 32(1): 244-256 https://doi.org/10.13745/j.esf.sf.2024.10.39

参考文献

[1]
TOMURTOGOO O. Tectonic framework of Mongolia[M]. Ulaanbaatar: Mongolian University of Science and Technology Press, 2006.
[2]
聂凤军, 江思宏, 白大明, 等. 蒙古国南部及邻区金属矿床类型及其时空分布特征[J]. 地球学报, 2010, 31(3): 267-288.
[3]
李俊建, 张锋, 任军平, 等. 中蒙边界地区构造单元划分[J]. 地质通报, 2015, 34(4): 636-662.
[4]
李俊建, 唐文龙, 付超, 等. 中蒙边界地区成矿区带划分[J]. 地质通报, 2016, 35(4): 461-487.
[5]
谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716.
[6]
李俊建. 蒙古地质矿产概况[M]. 天津: 天津科学技术出版社, 2013.
[7]
卜建军, 何卫红, 张克信, 等. 古亚洲洋的演化: 来自古生物地层学方面的证据[J]. 地球科学, 2020, 45(3): 711-727.
[8]
王涛, 黄河, 宋鹏, 等. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例[J]. 地球科学, 2020, 45(7): 2326-2344.
[9]
李俊建, OROLMAA D. 中蒙边界地区地质图[M]. 北京: 地质出版社, 2021.
[10]
付超, 李俊建, 唐文龙, 等. 中蒙边界中西段地层划分与对比[J]. 地质通报, 2016, 35(4): 503-518.
[11]
唐文龙, 李俊建, 付超, 等. 中蒙边界中东段地层划分与对比[J]. 地质通报, 2016, 35(4): 488-502.
[12]
李楠, 曹瑞, 叶会寿, 等. 内蒙古浩尧尔忽洞金矿三维建模与深部成矿预测[J]. 地学前缘, 2021, 28(3): 170-189.
[13]
王学求, 申伍军, 张必敏, 等. 地球化学块体与大型矿集区的关系: 以东天山为例[J]. 地学前缘, 2007, 14(5): 116-123.
[14]
刘汉粮, 聂兰仕, SHOJIN D, 等. 中蒙边界地区战略性矿产资源锂区域地球化学分布及控制因素[J]. 地球科学, 2022, 47(8): 2795-2808.
[15]
刘汉粮, 聂兰仕, SHOJIN D, 等. 中蒙边界地区汇水域沉积物69种元素的背景值[J]. 地学前缘, 2020, 27(3): 202-221.
[16]
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42.
[17]
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.
[18]
史长义. 勘查数据分析(EDA)技术的应用[J]. 地质与勘探, 1993, 29(11): 52-58.
[19]
KÜRZL H. Exploratory data analysis: recent advances for the interpretation of geochemical data[J]. Journal of Geochemical Exploration, 1988, 30(1/2/3): 309-322.
[20]
REIMANN C, GARRETT R G. Geochemical background: concept and reality[J]. Science of the Total Environment, 2005, 350(1/2/3): 12-27.
[21]
谢学锦, 刘大文, 向运川, 等. 地球化学块体: 概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233.
[22]
李新俊, 刘伟. 东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约[J]. 岩石学报, 2002, 18(4): 551-558.
[23]
丛丽娟, 贾志业, 梁秀娟, 等. 岩矿石NIR光谱特征与地球化学异常成分之间的关系: 以内蒙古朱拉扎嘎金矿为例[J]. 地学前缘, 2017, 24(5): 299-305.
[24]
任经武, 杜贵超, 王进宝, 等. 新疆哈密野马泉西金矿区资源量数据集[J]. 中国地质, 2018, 45(增刊2): 62-74, 176-190.
[25]
秦雅静, 张莉, 郑义, 等. 新疆萨热阔布金矿床流体包裹体研究及矿床成因[J]. 大地构造与成矿学, 2012, 36(2): 227-239.
[26]
HART-MADIGAN L, WILKINSON J J, LASALLE S, et al. U-Pb dating of hydrothermal titanite resolves multiple phases of propylitic alteration in the Oyu Tolgoi porphyry district, Mongolia[J]. Economic Geology, 2020, 115(8): 1605-1618.
[27]
陈志刚, 杨一卜. 蒙古国查干陶勒盖铜金矿运用综合勘探方法的归一性与快速评价直接找矿探讨[J]. 中国金属通报, 2021(7): 94-95, 99.
[28]
杨一卜, 陈必彬, 陈志刚, 等. 电磁法工作在蒙古国查干陶勒盖铜金矿的应用[J]. 世界有色金属, 2021(7): 102-104.
[29]
HAWKES H E, WEBB J S. Geochemistry in mineral exploration[M]. New York: Harper and Row, 1962.
[30]
王学求. 巨型矿床与大型矿集区勘查地球化学[J]. 矿床地质, 2000, 19(1): 76-87.
[31]
周建, 徐善法, 聂兰仕, 等. 内蒙古自治区大型金矿地球化学标志与预测[J]. 地球学报, 2020, 41(6): 818-826.

基金

中国地质调查局地质调查项目(DD20230623)
中国地质科学院基本科研业务费项目(JKYZD202327)
中国地质科学院基本科研业务费项目(AS2022P03)

评论

PDF(6053 KB)

Accesses

Citation

Detail

段落导航
相关文章

/