
“化学地球”大科学计划:全球关键元素分布与循环
王学求
“化学地球”大科学计划:全球关键元素分布与循环
Big Science program on CHEMICAL EARTH: Global distribution and cycle of key elements
“化学地球”的概念于2008年提出,2016年由联合国教科文组织全球尺度地球化学国际研究中心发起“化学地球”大科学计划倡议,2023年被联合国教科文组织正式批准。目标:将元素周期表绘制在地球上,建立化学属性数字地球,服务于全球资源环境可持续发展。科学技术问题:关键元素在地球上的时空分布和循环,全球不同地质地貌景观特点的地球化学探测技术、元素高精度分析和大数据开发技术。主要成果如下:(1)建立全球陆地1/3地球化学基准网,提供76个元素地球化学基准值,初步揭示关键元素全球分布规律,发现一批稀土元素(REE)、锂、铜和金等超常富集区,据此发现云南红河州超大规模中重稀土矿;(2)全球8个有毒重金属元素分布显示,欧洲超过风险限值的面积最大,占欧洲面积的48%,欧洲早期工业历史,没有清洁生产技术,导致大量有害物质排放;(3)中国地球化学观测网揭示镉、汞、砷和钙4个元素近30年发生显著变化,并发现汞的循环是以纳米辰砂微粒为主,而不是传统认为的气体形式迁移和循环;(4)地球化学大数据揭示我国7大粮食主产区,耕地质量总体安全,并利用大数据技术赋予绿色土地二维码标识,通过手机客户端实现绿色食品溯源。“化学地球”大科学计划入选习总书记主持的全球发展高层对话会主席声明成果清单,服务了高层决策和全球发展。
The Big Science Program on CHEMICAL EARTH was first proposed by Wang et al. in 2008. An initiative was lunched in 2016 by the UNESCO International Centre on Global-scale Geochemistry and accepted by the UNESCO in 2023. The goal was to establish a digital CHEMICAL EARTH presenting all naturally occuring chemical elements on Earth to provide data services for sustainable global development; the scientific and technical aims were to understand the spatiotemporal distribution and cyclying of key elements on Earth, and to develop high-quality laboratory chemical analysis and big data mining technology. This article summaries the major achievements to date. (1) A Global Geochemical Baselines Network is established covering 33% of the world’s land area. It provides spatial distribution patterns and geochemical baselines of 76 chemical elements, allowing delineation of REE, Li, Cu and Au super-enrichment targets and, whereby, the discovery of giant HREE deposits in Yunnan. (2) A global distribution map of eight toxic heavy metals in soil is completed. It finds that Europe has the highest pollution risks compared to China and the United States, with 48% of its land area exceeding the pollution risk limits for the studied heavy metals. This results from Europe’s long history of industrial development without early pollution control technology, allowing large-scale toxins release into the environment. (3) China Geochemical Observation Network is established based on three rounds of resampling campaigns throughout China. It finds significant increase of Cd, Hg, As, and Ca in the past 30 years, and that cycling of Hg occurs in the form of nano cinnabar (HgS) grains, not mercury vapor as traditionally recognized. (4) The program promotes public access to geochemical big data by providing QR codes, which allow anyone to query big data through websites and mobile phones. Geochemical big data show that farmlands in China’s major grain-produing regions overall are of good quality in terms of food safety.
CHEMICAL EARTH / big science program / key elements / global distribution and cycling
P632;P595
[1] |
王学求, 谢学锦, 张本仁, 等. 地壳全元素探测: 构建“化学地球”[J]. 地质学报, 2010, 84(6): 854-864.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
王学求. “化学地球” 国际大科学计划取得重要进展[J]. 中国地质, 2018, 45(5): 858.
|
[7] |
王学求. 透视全球资源与环境, 实施“化学地球” 国际大科学计划[J]. 中国地质, 2017, 44(1): 201-202.
|
[8] |
第一张地球化学图诞生[J]. 科学, 2022, 74(2): 封页, 34.
|
[9] |
王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
王学求, 张必敏, 姚文生, 等. 地球化学探测: 从纳米到全球[J]. 地学前缘, 2014, 21(1): 65-74.
|
[20] |
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.
|
[21] |
王学求, 张勤, 白金峰, 等. 地球化学基准与环境监测实验室分析指标对比与建议[J]. 岩矿测试, 2020, 39(1): 1-14.
|
[22] |
王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423.
|
[23] |
王学求, 周建, 迟清华, 等. 中国稀土元素地球化学背景与远景区优选[J]. 地球学报, 2020, 41(6): 747-758.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
王学求, 周建, 刘汉粮, 等. 喜马拉雅成矿带锂-铍-铷-铯超常富集规律与稀有元素找矿潜力预测[J], 地质学报, 2024, 98(11): 3274-3284.
|
[28] |
王学求, 周建, 张必敏, 等. 云南红河州超大规模离子吸附型稀土矿的发现及其意义[J]. 地球学报, 2022, 43(4): 509-519.
|
/
〈 |
|
〉 |