
氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术
陶士振, 吴义平, 陶小晚, 王晓波, 王青, 陈胜, 高建荣, 吴晓智, 刘申奥艺, 宋连腾, 陈荣, 李谦, 杨怡青, 陈悦, 陈秀艳, 陈燕燕, 齐雯
氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术
Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain
鉴于我国氦气产业链理论技术需求,针对国内外尚无系统的氦气地质理论认识,缺乏针对性的氦气资源评价方法、参数取值标准,缺乏氦气含量综合准确检测、有利富集区优选方法,无成本指标优化体系及全产业链一体化评价方法等卡点和难点,本文运用地质、地球化学、重磁电震、投资经济等多学科方法及实验技术,集中力量攻克氦气成藏机理、资源评价及资产评价的关键技术瓶颈。研发形成1项地质理论认识和3项关键技术:基于典型富氦气藏解剖、地下流体中“氦-气-水”相平衡及相-势耦合分析,研究提出氦气“水溶相、气容相、游离相”3种主要赋存状态、“集流、渗流、扩散”3种运移机理、“近氦源、邻断裂、低压区、高部位”4项分布富集控制因素,初步建立了基于“优质氦源、高效输导、适宜载体”的氦气“生-运-聚”地质理论认识。针对国内氦气含量检测技术参差不齐、部分准确度差、与国外数据差别大、无针对性的氦气资源评价方法等系列难题,以氦气源及氦气含量为核心,研发氦气含量综合准确检测技术,构建4类10种氦气资源评价方法,解决了氦气资源分级分类评价的技术瓶颈。针对基底氦源分布、岩性识别、通源断裂刻画及含氦储层评价难题,创建了归一化重磁下延方案,研发了基于深度学习的多尺度断裂智能识别技术和不同氦气含量下的气藏声学性质模拟方法,为氦源岩分布预测、通源断裂刻画、含氦储层测井解释评价及预测奠定了基础。通过建立多元控氦的富氦区带与目标优选技术,解决了富氦区带与目标优选难题。针对国内贫氦实际情况,以提氦装置投资和操作成本最小化为目标,采用响应面法建立优化目标与各主要工艺参数的非线性回归模型,建立了氦气全产业链一体化评价技术,初步解决了天然气低成本提氦工艺流程优化的技术需求。研究成果为我国长期、安全、规模利用氦气资源资产提供了有效支撑。
China's helium industrial chain needs scientific and technological support, but there lack a systematic theoretical understanding of helium geology, along with the lacks of targeted helium resource evaluation methods and parameter selection standard, comprehensive accurate detection of helium content, helium prospecting methods, cost index system, as well as methodology for integrative evaluation of the entire helium industrial chain. To address these knowledge/technology gaps we developed a helium accumulation model and three key technologies for helium resource and asset evaluation, using interdisciplinary research methodology and experimental techniques involving geology, geochemistry, gravity-aeromagnetic-electrical-seismic, and investment and economics. Through detailed investigation of typical helium-rich gas reservoirs, combined with analysis of “helium-natural gas-water” phase equilibria and phase-potential coupling in underground fluids, we revealed three helium occurrences—water-dissolved, gas-dissolved, free-particle; three migration mechanisms—mass-flow, seepage, diffusion; and four dispersion-enrichment controlling factors—proximity to source, adjacent faults, low-pressure zone, high-location. We developed a theoretical framework for the understanding of helium geology, recognizing high-quality source, efficient migration, suitable gas-carrier are the three key controlling factors of effective helium accumulation. To overcome a series of challenges in helium detection, such as variable detection techniques, low accuracy, large discrepancies with foreign data, and no targeted resource evaluation methods, we developed a comprehensive, accurate detection technique for helium content, with helium source and content at the core, and established 10 resource evaluation methods under four categories, solving the technical bottleneck in helium resource classification and evaluation. A normalized gravity/magnetic downward extension scheme was created to address challenges in helium source-rock distribution, lithofacies identification, source-fault characterization, and reservoir evaluation. An intelligent identification technique for multi-scale faults based on deep learning and a simulation method for acoustic properties of gas reservoir under different helium contents were developed, laying the foundation of predicting source-rock distribution, characterizing source-faults, logging interpretation, and evaluating helium-bearing gas reservoirs. By establishing a multi-process helium control model for helium-rich gas zones and target optimization methodology, the problem of target optimization for helium-rich gas zones is solved. Facing the reality of helium deficiency in China, with the goal of promoting cost-effective investment in helium extraction equipment, we developed a methodology for integrative evaluation of the entire helium industrial chain by adopting response surface methodology to build a nonlinear regression model between optimization target and various main process parameters, which preliminarily addressed the technical demand for cost-effective helium extraction from natural gas. Results from this research provide effective support for China's long-term, safe, and large-scale utilization of its natural helium asset.
氦气 / 氦源岩 / 氦气成藏机理 / 资源评价 / 区带目标优选 / 响应面法 / 深度学习 / 回归模型
helium / helium source rock / helium accumulation mechanism / resource evaluation / zone target optimization / response surface / deep learning / regression models
P593;P618.13;P624.7;TQ116.41
[1] |
徐永昌, 沈平, 刘文汇, 等. 天然气中稀有气体地球化学[M]. 北京: 科学出版社, 1998.
|
[2] |
|
[3] |
戴金星, 夏新宇, 赵林, 等. 渤海湾盆地和鄂尔多斯盆地氦同位素组成特征及其对含气性的意义[C]// 寸丹集: 庆贺刘光鼎院士工作50周年学术论文集. 北京: 科学出版社, 1998: 386-392.
|
[4] |
戴金星, 李剑, 侯路. 鄂尔多斯盆地氦同位素的特征[J]. 高校地质学报, 2005, 11(4): 473-478.
|
[5] |
陶士振, 刘德良, 朱文锦, 等. 中国东部幔源气体同位素地球化学[J]. 大地构造与成矿学, 2001, 25(4): 412-419.
|
[6] |
陶士振, 戴金星, 邹才能, 等. 松辽盆地火山岩包裹体稀有气体同位素与天然气成因成藏示踪[J]. 岩石学报, 2012, 28(3): 927-938.
|
[7] |
陶士振, 刘德良. 郯庐断裂带及邻区地热场特征、温泉形成因素及气体组成[J]. 天然气工业, 2000, 20(6): 42-47
|
[8] |
|
[9] |
彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田: 鄂尔多斯盆地东胜气田特征[J]. 中国科学(地球科学), 2022, 52(6): 1078-1085.
|
[10] |
陶士振, 刘德良, 李振生, 等. 无机成因天然气[M]. 合肥: 中国科学技术大学出版社, 2014: 82-94.
|
[11] |
陶士振, 刘德良, 杨晓勇, 等. 非生物成因天然气(藏)的构造成因类型及其地球化学特征[J]. 大地构造与成矿学, 1998, 22(4): 309-322.
|
[12] |
|
[13] |
陶士振, 杨怡青, 高建荣, 等. 鄂尔多斯盆地致密砂岩气及伴生氦气形成演化特征[J]. 天然气地球科学, 2023, 34(4): 551-565.
|
[14] |
陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041.
|
[15] |
|
[16] |
陈悦, 陶士振, 杨怡青. 中国氦气地球化学特征、聚集规律与前景展望[J]. 中国矿业大学学报, 2023, 52(1): 145-167.
|
[17] |
陶士振, 刘德良, 卫延召, 等. 造山带超高压变质流体中气体组成及成藏条件初探[J]. 地质科学, 2001, 36(1): 91-100.
|
[18] |
张晓宝, 周飞, 曹占元, 等. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592.
|
[19] |
周飞, 张永庶, 王彩霞, 等. 柴达木盆地东坪—牛东地区天然气地球化学特征及来源探讨[J]. 天然气地球科学, 2016, 27(7): 1312-1323.
|
[20] |
|
[21] |
|
[22] |
蒋崧生. 地球内部的3He是原始起源吗?[J]. 自然杂志, 2007, 29(2): 102-106
|
[23] |
|
[24] |
仵宗涛, 刘兴旺, 李孝甫, 等. 稀有气体同位素在四川盆地元坝气藏气源对比中的应用[J]. 天然气地球科学, 2017, 28(7): 1072-1077.
|
[25] |
杜建国, 刘文汇. 三水盆地天然气中的氦和氩同位素地球化学研究[J]. 天然气地球科学, 1991(6): 283-285.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
张明升, 张金功, 张建坤, 等. 氦气成藏研究进展[J]. 地下水, 2014, 36(3): 189-191.
|
[30] |
王晓波, 李志生, 李剑, 等. 稀有气体全组分含量及同位素分析技术[J]. 石油学报, 2013, 34(增刊1): 70-77.
|
[31] |
李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 535-543.
|
[32] |
|
[33] |
|
[34] |
李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 44(3): 363-373.
|
[35] |
赵迎冬, 赵银军. 油气资源评价方法的分类、内涵与外延[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 64-74
|
[36] |
何衍鑫, 田伟, 王磊, 等. 基于自然伽马能谱测井的氦气资源评价方法: 以塔里木盆地古城地区为例[J]. 天然气地球科学, 2023, 34(4): 719-733.
|
[37] |
张福礼, 孙启邦, 王行运, 等. 渭河盆地水溶氦气资源评价[J]. 地质力学学报, 2012, 41(2): 195-202.
|
[38] |
|
[39] |
吴义平, 王青, 陶士振, 等. 壳源氦气成藏主控因素及资源评价方法研究[J]. 地学前缘, 2024, 31(1): 340-350.
|
[40] |
姜振学, 庞雄奇, 周心怀, 等. 油气资源评价的多参数约束改进油气田(藏)规模序列法及其应用[J]. 海相油气地质, 2009, 3: 53-59.
|
[41] |
田作基, 吴义平, 王兆明, 等. 全球常规油气资源评价及潜力分析[J]. 地学前缘, 2014, 21(3): 10-17.
|
[42] |
武冠军, 张延萍. 俄罗斯东部天然气资源及天然气管网规划[J]. 国际石油经济, 2005, 13(4): 48-56.
|
[43] |
闫博, 李强, 何衍鑫, 等. 基于类比法的塔里木盆地氦气资源评价[J]. 地质论评, 2023, 69(1): 435-436.
|
[44] |
|
[45] |
|
[46] |
何衍鑫, 田伟, 闫博, 等. 塔里木盆地生氦模拟及其意义[J]. 地质论评, 2023, 69(1): 111-112.
|
[47] |
蒙炳坤, 周世新, 李靖, 等. 上扬子地区不同类型岩石生氦潜力评价及泥页岩氦气开采条件理论计算[J]. 矿物岩石, 2021, 41(4): 102-113.
|
[48] |
李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501.
|
[49] |
何静波, 刘剑伦, 李强强, 等. 松辽盆地中央古隆起基岩断裂特征[J]. 石油地球物理勘探, 2022, 57(1): 229-235.
|
[50] |
赵强, 管彦武, 卢鹏羽, 等. 基于归一化特征值的重磁数据边界识别方法及其在西藏古堆地热勘探中的应用[J]. 吉林大学学报(地球科学版), 2023, 53(2): 578-588.
|
[51] |
赵欢欢, 梁慨慷, 魏志福, 等. 松辽盆地富氦气藏差异性富集规律及有利区预测[J]. 天然气地球科学, 2023, 34(4): 628-646.
|
[52] |
马国庆, 明彦伯, 贺杨, 等. 重磁数据稳定向下延拓的水平导数迭代法[J]. 地球科学, 2016, 41(7): 1231-1237.
|
[53] |
李长俊, 张财功, 贾文龙, 等. 天然气提氦技术开发进展[J]. 天然气化工(C1化学与化工), 2020, 45(4): 108-116.
|
[54] |
周军, 徐东阳, 梁光川, 等. 联产乙烷天然气提氦工艺的经济性与适用性分析[J]. 石油化工, 2023, 52(2): 229-236.
|
[55] |
|
[56] |
|
[57] |
张智超. 基于神经网络优化的非线性灰色伯努利模型[J]. 黑龙江工业学院学报(综合版), 2018, 18(3): 64-68.
|
[58] |
李婧琦. 基于鲸鱼算法优化LSTM的股票价格预测模型[J]. 智能计算机与应用, 2023, 13(2): 35-40.
|
[59] |
荣杨佳, 王成雄, 赵云昆, 等. 天然气轻烃回收与提氦联产工艺[J]. 天然气工业, 2021, 41(5): 127-135.
|
[60] |
|
[61] |
蒋洪, 陈泳村, 程祥. 低含氦天然气提氦联产LNG工艺设计与分析[J]. 低碳化学与化工, 2023, 48(4): 169-175.
|
[62] |
陶厚永, 曹伟. 多项式回归与响应面分析的原理及应用[J]. 统计与决策, 2020, 36(8): 36-40.
|
/
〈 |
|
〉 |