美国典型富氦无机成因气田中氦气地质特征与聚集机制

杨怡青, 陶士振, 陈悦

PDF(10645 KB)
PDF(10645 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 327-339. DOI: 10.13745/j.esf.sf.2024.1.70
沉积盆地分析与多种能源勘探

美国典型富氦无机成因气田中氦气地质特征与聚集机制

作者信息 +

Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States

Author information +
History +

摘要

美国广泛发育具有经济效益的富氦无机成因天然气田,如其中富氦氮气田甚至可以含有高达10%的氦。原地和周边地区的基底提供充足的氦源而氮气可来自不同圈层,且通常N2/He (He>0.1%)在5~50之间。但是富氦氮气田在美国独特地质环境之外是否也有发现还需要进一步的研究。富氦二氧化碳气田中的氦主要也来自壳源且产量可观。科罗拉多高原上的富氦二氧化碳气田均被认为是来源于新生代晚期的岩浆活动,且该地区岩浆岩具有较高的U、Th含量。地下水溶气脱气-再溶解(Groundwater Gas Stripping and Re-dissolution, GGS-R)模型被普遍认为可以合理解释CO2气藏中氮气、氦等惰性气体的聚集成藏机制。具体来说,幔源CO2载体气充注时将溶解在地下水中的大气源惰性气体与壳源惰性气体脱出成藏,并与地下水达到水/气溶解平衡。虽然不同气田的平衡值各有不同,但是科罗拉多高原上的各气田均显示出相似的范围值,即在相应的储层压力和温度下为0~100 cm3水/cm3气。本文系统分析美国无机成因富氦气藏的氦气生成、运移和聚集机制,讨论氦气在经历氦源岩内游离相扩散初次运移后通过水溶相、气容相集流或是多相渗流方式进行的二次运移及由无机成因载体气N2和CO2共同参与的富集成藏机制,既可为我国氦气勘查提供理论认识依据,也可为二氧化碳地质评价和开发利用及安全封存提供参考。

Abstract

Economically viable abiotic helium-rich gas fields are widely developed in the United States. He-rich N2 gas fields, for example, contain as much as 10% He, as the basement rocks in situ and in the surrounding area provides sufficient crustal He and N2 to yield an N2/He (He > 0.1%) ratio typically between 5-50. However, He-rich N2 gas fields so far are only found in the United States, and further research is needed to determine whether they are due to unique geological conditions, or yet to be discovered elsewhere. He-rich CO2 gas fields also contain significant quantity of crustal helium. He-rich CO2 gas fields in the Colorado Plateau are all thought to have originated from late Cenozoic magmatism, and the magmatic rocks in the region have high U/Th contents. The groundwater gas stripping and re-dissolution (GGS-R) model is commonly used to explain the trapping mechanism of noble gases in CO2 gas reservoirs. According to this model, mantle-sourced CO2 carrier gas stripes air-sourced noble gases dissolved in the groundwater to charge reservoirs along with crustal-derived noble gases, and dissolution equilibrium subsequently reestablishes between the noble gases and groundwater. While the water/gas ratios at equilibrium differ between different gas fields, they are similar in all gas fields in the Colorado Plateau ranging between 0-100 (at reservoir pressure and temperature). By systematic analysis and summarization of the source, migration, and accumulation mechanisms of helium in helium-rich abiotic gas reservoirs in the United States, and discuss the enrichment of helium of primary migration by diffusion in helium source rocks, and of secondary migration by water phase mass flow or multiphase porous flow/seepage with inorganic carrier gases N2 and CO2, this paper provides a theoretical basis for helium exploration in China, and can be used as a reference for geological evaluation of CO2 reservoirs and development of CO2 safe storage.

关键词

氦气 / 富氦气田 / CO2气田 / N2气田 / 非烃气 / 无机成因 / 地质特征 / 聚集机制

Key words

helium / helium-rich gas field / CO2 gas field / N2 gas field / abiotic natural gas / inorganic genesis / geological characteristics / enrichment mechanism

中图分类号

P593;P618.13;TQ116.41

引用本文

导出引用
杨怡青 , 陶士振 , 陈悦. 美国典型富氦无机成因气田中氦气地质特征与聚集机制. 地学前缘. 2024, 31(1): 327-339 https://doi.org/10.13745/j.esf.sf.2024.1.70
Yiqing YANG, Shizhen TAO, Yue CHEN. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States[J]. Earth Science Frontiers. 2024, 31(1): 327-339 https://doi.org/10.13745/j.esf.sf.2024.1.70

参考文献

[1]
CADY H P, MCFARLAND D F. The occurrence of helium in natural gas and the composition of natural gas[J]. The occurrence of helium in natural gas and the composition of natural gas[J]. Journal of the American Chemical Society, 1907, 29(11): 1523-1536.
[2]
BALLENTINE C J, LOLLAR B S. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA[J]. Geochimica et Cosmochimica Acta, 2002, 66(14): 2483-2497.
[3]
DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017.
[4]
GILFILLAN S M V, BALLENTINE C J, HOLLAND G, et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1174-1198.
[5]
WISEMAN T, ECKELS M T. Proven and hypothetical helium resources in Utah[R/OL]. ( 2020-06-29) [2024-01-09]. https://doi.org/10.34191/mp-174.
[6]
NICHOLS C, EPPINK J, HEIDRICK T L, et al. Subsurface sources of CO2 in the contiguous United States[R/OL]. ( 2014-03-05) [2024-01-09]. https://doi.org/10.2172/1503261.
[7]
DUMITRU T A, DUDDY I R, GREEN P F. Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado Plateau[J]. Geology, 1994, 22: 499-4502.
[8]
ALLEN P A, VERLANDER J A, BURGESS P M, et al. Jurassic giant erg deposits, flexure of the US continental interior, and the timing of the onset of cordilleran shortening[J]. Geology, 2000, 28: 159-162.
[9]
BLAKEY R C. Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and southern Rocky Mountains[J]. Sedimentary Basins of the World, 2008, 5: 245-296.
[10]
ANDREW D M. The sedimentary basins of the United States and Canada[M]//BURGESS P M. Phanerozoic evolution of the sedimentary cover of the North American Craton. 2nd ed. Amsterdam: Elsevier, 2019: 39-75.
[11]
HOUSTONG W S, WRAY L L, MORELAND P G. The Paradox Basin Revisited-new developments in petroleum systems and basin analysis[M]//KLUTH C F, DUCHENE H R. Late Pennsylvanian and Early Permian structural geology and tectonic history of the Paradox Basin and Uncompahgre uplift, Colorado and Utah. Denver: RMAG, 2009: 178-197.
[12]
TEDESCO S A. Geology and production of helium and associated gases[M]. Amsterdam: Elsevier, 2022.
[13]
BRENNAN S T, EAST J A, DENNEN K O, et al. Dataset of helium concentrations in United States wells: US Geological Survey Data Release[R/OL]. ( 2021-05-18) [2024-01-09]. https://doi.org/10.5066/P92QL79J.
[14]
ADAMS J G, GONZALES D, DARRAH T. Application of noble gas isotopic signatures at McElmo Dome-Doe Canyon field to investigate CO2 source and system characterization[C/OL]// AAPG annual convention and exhibition 2015, Denver: Rocky Mountain association of geologists, 2015. https://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2095645.html
[15]
CAPPA J A, RICE D D. Carbon dioxide in Mississippian rocks of the Paradox Basin and adjacent areas, Colorado, Utah, New Mexico, and Arizona[R]. Denver: USGPO; US Geological Survey Information Services, 1995.
[16]
STEVENS S H, TYE B S. Natural CO2 analogs for carbon sequestration[R/OL]. ( 2005-07-31) [2024-01-09]. https://doi.org/10.2172/902517.
[17]
RAUZI S L. Carbon dioxide in the St. John's Springerville area, Apache county, Arizona[R]. Tucson: Arizona Geological Survey, 1999.
[18]
KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gas in lakes and ground waters[J]. Review in Mineralogy and Geochemistry, 2002, 47: 615-689.
[19]
BECKER T P, LYNDS R. A geologic deconstruction of one of the world's largest natural accumulations of CO2, Moxa arch, southwestern Wyoming[J]. AAPG Bulletin, 2012, 96(9): 1643-1664.
[20]
STILWELL D P. CO2 resources of the Moxa arch and the Madison reservoir[C]// Gas resources of Wyoming; 40th annual field conference guidebook, Casper: Wyoming Geological Association, 1989: 105-115.
[21]
MERRILL M D, HUNT A. Updated regional and field scale He accumulation geochemistry, La Barge Platform, WY[C/OL]// AAPG Rocky Mountain section annual meeting 2017, Billings: Montana Geological Society, 2017. https://www.searchanddiscovery.com/pdfz/abstracts/pdf/2017/90301rms/abstracts/ndx_merrill.pdf.html.
[22]
RAUZI S L. Review of helium production and potential in Arizona[R]. Tucson: Arizona Geological Survey, 2003.
[23]
MCDOWELL B, MIL KOV A V, ANDERSON D S. The helium system: a modification of the petroleum system for inert gases[C/OL]// AAPG annual convention and exhibition 2017. Houston: American Association of Petroleum Geologists, 2017. https://www.searchanddiscovery.com/abstracts/html/2017/90291ace/abstracts/2612903.html.
[24]
USGS Uinta-Piceance Assessment Team. Petroleum systems and geologic assessment of oil and gas in the Uinta-Piceance province, Utah and Colorado[M/OL]//JOHNSON R C, ROBERTS S B. The Mesaverde total petroleum system, Uinta-Piceance province, Utah and Colorado. Denver: USGS Digital Data Series DDS-69-B, 2003. https://pubs.usgs.gov/dds/dds-069/dds-069-b/REPORTS/Chapter_7.pdf.
[25]
CASE J E. Geologic map of the Northwestern part of the Uncompahgre uplift, Grand county, Utah, and Mesa county, Colorado, with Emphasis on Proterozoic rocks[R/OL]. ( 1991) [2024-01-09]. https://doi.org/10.3133/i2088.
[26]
HALFORD D T. Isotopic analyses of helium from wells located in the Four Corners area, Southwestern, US[D]. Golden: Colorado School of Mines, 2018.
[27]
ZHU Y, SHI B, FANG C. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations[J]. Chemical Geology, 2000, 164(3/4): 321-330.
[28]
HOLLOWAY J M, DAHLGREN R A. Nitrogen in rock: occurrences and biochemical implications[J]. Global Biogeochemical Cycles, 2002, 16 (4): 65-1-65-17.
[29]
BROWN A A. PS Formation of high helium gases: A guide for explorationists[C]// AAPG annual convention and exhibition 2010, New Orleans: American association of petroleum geologists, 2010. https://www.searchanddiscovery.com/pdfz/documents/2010/80115brown/ndx_brown.pdf.html.
[30]
BROWN A A. Possible origins for low thermal maturity, high-nitrogen natural gases[J]. Geochemistry, 2017, 47: 481-538.
[31]
BOUDOU J, ESPITALIE J. Molecular nitrogen from coal pyrolysis: kinetic modelling[J]. Chemical Geology, 1995, 126(3/4): 319-333.
[32]
ADER M, BOUDOU J P, JAVOY M, et al. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (USA) and from the Bramsche Massif (Germany)[J]. Organic Geochemistry, 1998, 29(1/2/3): 315-323.
[33]
BROWN A A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403.
[34]
JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453.
[35]
CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. New York: CRC Press, 2013.

基金

中国石油天然气集团有限公司关键核心技术攻关项目(2021ZG13)

评论

PDF(10645 KB)

Accesses

Citation

Detail

段落导航
相关文章

/