元地球与数字孪生:思想突破、技术变革与范式转换

李三忠, 索艳慧, 戴黎明, 王亮亮, 姜兆霞, 曹现志, 苏国辉, 刘丽军, 周建平, 李玺瑶, 刘洁, 朱俊江, 乔璐璐, 王光增, 姜素华, 王秀娟, 刘琳, 管红香, 李晓辉, 胡军, 刘鹏, 刘泽, 董冬冬, 郭玲莉, 邹志辉, 董昊, 钟世华, 孙国正, 刘洋, 于胜尧, 吴立新, 邹卓延, 孙毅

PDF(9509 KB)
PDF(9509 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 46-63. DOI: 10.13745/j.esf.sf.2024.1.48
地球动力学与深部过程

元地球与数字孪生:思想突破、技术变革与范式转换

作者信息 +

Meta-Earth and Digital Twin: Breakthrough concept, technological revolution and paradigm shift

Author information +
History +

摘要

数字孪生在航天、工业制造领域已应用了20多年,但引入海洋科学还是首次。通过数字孪生技术,实现真实地球与虚拟地球的融合,构建一个真实地球与数字地球的虚实共同体,这里称为“元地球”。本文介绍了元地球与早期提出的数字地球、虚拟地球、玻璃地球、智慧地球的本质区别,进而突出元地球理念或思想上的巨大突破。基于现今元宇宙BIGANT技术体系,构架跨越地球各圈层的实时、全天候、立体观测感知系统,打通地球系统各圈层动力学模拟隔阂,实现超越现今地球,再现深时地球,实现时空穿越,从而集数字地球、虚拟地球、玻璃地球、智慧地球、现今地球、深时地球的特性于一个共同体,这个深时的虚实共同体就是元地球。这一理念必将催生新的技术范式变革,进而超越现实地球、虚拟地球,开启人类认识地球、探测地球、开发地球的全新方式。在实现研究范式转换的同时,推动元地球的多场景应用,这也必将催生未来的万亿新产业。

Abstract

Digital Twin has been used in aerospace and industrial manufacturing for more than 20 years, but it is only introduced into marine science recently. Here we adopt Digital Twin technology to realize the integration of real- and virtual-Earth, and build a virtual-real, symbiotic community of real- and digital-Earth which we call “meta-Earth.” We first summarize the essential differences between meta-Earth and the early proposed digital-Earth, virtual-Earth, glass-Earth and smart-Earth, and then highlight the great breakthroughs in the concept or idea of “meta-Earth.” The core idea is that under the current metaverse BIGANT technic system we can realize gapless, cross-sphere dynamic simulation of the Earth system, which allow to build a global, multi-sphere, real-time, all-weather, three-dimensional Earth observing system, reconstruct the deep-time Earth beyond the present-day Earth, and realize space-time travel. By doing so we can integrate all previous Earth models—digital, virtual, glass, smart, present and deep-time—into a community called meta-Earth. This novel concept should bring a technological paradigm shift surpassing real- and virtual-Earth, thus opening a new way for mankind to understand, explore and develop the Earth. Promoting multi-tier application of meta-Earth while making research paradigm shift shall advance the development of new trillion-RMB industries in the future.

关键词

元地球 / 真实地球 / 虚拟地球 / 数字地球 / 数字孪生 / 地球系统 / 范式

Key words

meta-Earth / real-Earth / virtual-Earth / digital-Earth / digital twin / Earth system / paradigm

中图分类号

P51;P736;P22;TP18

引用本文

导出引用
李三忠 , 索艳慧 , 戴黎明 , . 元地球与数字孪生:思想突破、技术变革与范式转换. 地学前缘. 2024, 31(1): 46-63 https://doi.org/10.13745/j.esf.sf.2024.1.48
Sanzhong LI, Yanhui SUO, Liming DAI, et al. Meta-Earth and Digital Twin: Breakthrough concept, technological revolution and paradigm shift[J]. Earth Science Frontiers. 2024, 31(1): 46-63 https://doi.org/10.13745/j.esf.sf.2024.1.48

参考文献

[1]
冯学智, 都金康. 数字地球导论[M]. 北京: 商务印书馆, 2007: 1-288.
[2]
CARR G R, ANDREW A S, DENTON G, et al. The ‘Glass Earth’: geochemical frontiers in exploration through cover[M]. Sydney: Australian Institute of Geoscientists, 1999: 33-40.
[3]
吴冲龙, 刘刚, 田宜平, 等. 地质信息科学与技术概论[M]. 北京: 科学出版社, 2014: 1-521.
[4]
邢杰, 赵国栋, 徐远重, 等. 元宇宙通证: 通向未来的护照[M]. 北京: 中国出版集团中译出版社, 2021: 1-125.
[5]
MÜLLER R D, CANNON J, QIN X, et al. GPlates: building a virtual Earth through deep time[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2243-2261.
[6]
ZHONG S, MCNAMARA A, TAN E, et al. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10): Q10017.
[7]
SALLES T. Badlands: a parallel basin and landscape dynamics model[J]. Softwarex, 2016(5): 195-202.
[8]
郭沙, 赵勇, 谷瑞翔, 等. 数字经济的基础支撑: 数字孪生[M]. 北京: 中国财富出版社有限公司, 2021: 1-351.
[9]
CAO X, FLAMENT N, BODUR O, et al. The evolution of basal mantle structure in response to supercontinent aggregation and dispersal[J]. Scientific Reports, 2021(11): 22967.
[10]
LIU P, LIU Y, PENG Y, et al. Large influence of dust on the Precambrian climate[J]. Nature Communications, 2020, 11(1): 1-8.
[11]
李三忠, 索艳慧, 刘博, 等. 微板块构造理论: 全球洋内与陆缘微地块研究的启示[J]. 地学前缘, 2018, 25(5): 324-355.
[12]
李三忠, 曹现志, 王光增, 等. 太平洋板块中新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677.
[13]
李三忠, 索艳慧, 王光增, 等. 海底 “三极” 与地表 “三极”: 动力学关联[J]. 海洋地质与第四纪地质, 2019, 39(5): 1-22.
[14]
李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4): 605-643.
[15]
李三忠, 索艳慧, 周洁, 等. 微板块与大板块: 基本原理与范式转换[J]. 地质学报, 2022, 96(10): 3541-3558.
[16]
JACKSON J A. Glossary of geology[M]. Alexandria: American Geological Institute, 1997.
[17]
GURNIS M, TURNER M, ZAHIROVIC S, et al. Plate tectonic reconstructions with continuously closing plates[J]. Computers & Geosciences, 2012, 38: 35-42.
[18]
MÜLLER R D, ZAHIROVIC S, WILLIAMS S E, et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic[J]. Tectonics, 2019, 38(6): 1884-1907.
[19]
GURNIS M, YANG T, CANNON J, et al. Global tectonic reconstructions with continuously deforming and evolving rigid plates[J]. Computers & Geosciences, 2018, 116: 32-41.
[20]
CAO X, ZAHIROVIC S, LI S, et al. A deforming plate tectonic model of the South China Block since the Jurassic[J]. Gondwana Research, 2022, 102: 3-16.
[21]
黄冬梅, 邹国良. 海洋大数据[M]. 上海: 上海科学技术出版社, 2016: 1-193.
[22]
李安波, 周良辰, 闾国年. 地质信息系统[M]. 北京: 科学出版社, 2013: 1-244.
[23]
李剑峰, 肖波, 肖莉, 等. 智能油田(上册、 下册)[M]. 北京: 中国石化出版社, 2020: 1-699.
[24]
CANALS M, LASTRAS G, URGELES R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the costa project[J]. Marine Geology, 2004, 213(1/2/3/4): 9-72.
[25]
BODUR Ö F, FLAMENT N. Kimberlite magmatism fed by upwelling above mobile basal mantle structures[J]. Nature Geoscience, 2023, 16(6): 534-540.
[26]
LIU Z, DAI L, LI S, et al. Earth's surface responses during geodynamic evolution: numerical insight from the southern East China Sea Continental Shelf Basin, West Pacific[J]. Gondwana Research, 2022, 102: 167-179.
[27]
LIU J, LI S, CAO X, et al. Back-arc tectonics and plate reconstruction of the Philippine Sea-South China Sea region since the Eocene[J]. Geophysical Research Letters, 2023, 50(5): e2022GL102154.
[28]
戴自希, 王家枢. 矿产勘查百年[M]. 北京: 地震出版社, 2004.
[29]
SCOTESE C R, WRIGHT N. PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. PALEOMAP project[DB/OL]. ( 2018-08-11)[2018-08-11]. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
[30]
翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 1-214.
[31]
MÜLLER R D, CANNON J, TETLEY M, et al. A tectonic-rules based mantle reference frame since 1 billion years ago: implications for supercontinent cycles and plate-mantle system evolution[J]. Solid Earth, 2022(13): 1127-1159.

基金

国家自然科学基金创新群体项目(42121005)
战略规划项目(L2324203)
中国科学院战略规划项目(XK2023DXC001)
崂山实验室科技创新项目(LSKJ202204400)
泰山攀登计划项目(tspd20210305)
山东省重大基础科学研究项目(ZR2021ZD09)

评论

PDF(9509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/