热液成矿系统构造控矿理论

杨立强, 杨伟, 张良, 高雪, 申世龙, 王偲瑞, 徐瀚涛, 贾晓晨, 邓军

PDF(10120 KB)
PDF(10120 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 239-266. DOI: 10.13745/j.esf.sf.2024.1.40
陆内成矿作用与成矿系统(华南中生代陆内成矿作用)

热液成矿系统构造控矿理论

作者信息 +

Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications

Author information +
History +

摘要

构造对成矿的控制是热液成矿系统的典型特征之一,系统剖析多重尺度控矿构造的几何学、运动学、动力学、流变学和热力学对认识矿床成因和预测找矿至关重要;而如何实现控矿构造格架、渗透性结构、成矿流体通道和矿化变形网络由静态到多尺度时-空四维动态的转变,查明流体通道和矿床增量生长过程与控制因素,揭示热液成矿系统的构造-流体耦合成矿机制和定位规律是亟待解决的关键科学难题。为此,我们在对已有相关成果系统梳理的基础上,提出了科学构建热液成矿系统构造控矿理论的基本要点与对应方法及应用范畴:(1)流体而非构造是构造控矿理论的中心,热液系统的流体流动与成矿作用受控于断裂带格架及其渗透性结构,其中渗透率是将流体流动与流体压力变化联系起来理解控矿构造的核心;(2)不同控矿构造组合的关键控制是构造差应力和流体压力的大小,而矿化类型的变化可能是由于构造应力场引起的容矿构造方位的不同和赋矿围岩之间的强度差异所致;(3)流体通道的生长始于超压流体储库上游围岩中孤立的微裂隙沿流体压力梯度最大的方向、随裂隙发育且相互连结而形成新的长裂隙,并最终连通形成断裂网络内的流体通道,矿床的增量生长发生在高流体通量的短爆发期,断层反复滑动驱动其内流体压力、流速和应力快速变化,当由此诱发的流体通道生长破坏了流体系统的动态平衡时,随之而来的流体快速降压就成为金属沉淀成矿的关键驱动因素;(4)以热液裂隙-脉系统野外地质观测和构造-蚀变-矿化网络三维填图为基础,通过宏观与微观各级控矿构造相结合、地质历史与构造应力分析相结合、局部与区域点-线-面相结合、浅部与深部相结合、时间与空间相结合、定性和定量相结合,对各种控矿因素开展多学科、多尺度、多层次、全方位综合研究,是应遵循的基本原则;(5)通过构造-蚀变-矿化网络填图,将蚀变-矿化体与控矿构造的类型、形态、规模、产状和间距等几何学特征联系起来,利用热液裂隙-脉系统和断裂网络拓扑学及矿体三维几何结构分析等定量方法查明控矿构造格架和渗透性结构并揭示矿化变形网络的连通性与成矿潜力;(6)合理构建地质模型,选取合适的热力学参数和动力学边界条件,利用HCh和COMSOL等方法,定量模拟成矿过程中的流体流动、热-质传递、应力变形和化学反应等的时-空变化,是揭示构造-流体耦合成矿机理和定位规律、预测矿化中心和确定找矿目标的有效途径。进而提出了构造控矿理论的研究流程:聚焦构造-流体耦合成矿机制和定位规律这一关键科学问题,选择热液裂隙-脉系统和构造-蚀变-矿化网络为重点研究对象;通过几何学描述、运动学判断、流变学分析、动力学解析和热力学综合,厘定控矿构造格架,定位矿化中心,示踪成矿流体通道和多种矿化样式的增量生长过程及其关键控制,揭示渗透性结构的时-空演变规律及构造再活化与成矿定位的成因关联,建立构造-流体耦合成矿模式,服务新一轮战略找矿突破。以胶东焦家金矿田为例,开展控矿构造理论研究和成矿预测应用实践,证实了其科学性和有效性。

Abstract

A defining feature of a hydrothermal metallogenic system (HMS) is strong structural control on ore mineralization. A systematic analysis of the geometry, kinematics, thermodynamics, and rheology of multiscale ore control structures is crucial for understanding the genesis of HMSs and for ore prospecting. The main challenges include: transitioning from static to multiscale spatiotemporal analysis of the 4D dynamical system involving ore-control structural frameworks, permeability structures, ore-forming fluid pathways, and mineralization deformation networks; identifying key influencing factors of fluid pathways that control ore deposition; and unraveling the mechanism of structure-fluid coupling control of ore formation and localization. This study presents the theoretical and methodological principles and application for developing structural control models for HMSs in the following aspects. (1) The theoretical core. It states that fluid, not structure, is at the core of a structural control model. Fluid flow and ore formation within a hydrothermal system are influenced by the fault zone architecture and permeability structure, where permeability, in linking fluid flow and fluid pressure variation, is key to understanding ore control structures. (2) Stress and pressure dynamics. It considers that differential stress and fluid pressure difference result in diverse combinations of ore control structures, while differences in regional stress field and host rock strength result in variations in mineralization type. (3) Growth of fluid pathways. It considers that fluid pathways initiate from isolated microfractures within the upstream host rocks of overpressured fluid reservoirs which evolve along the direction of the steepest pressure gradient to form new extended fractures through growth and interconnection. These extended fractures eventually interconnect to form fluid pathways. As ore deposition takes place during brief periods of high fluid flux when repeated fault sliding induces rapid changes in fluid pressure, flow velocity, and stress, rapid pressure release—caused by a disruption of dynamic equilibrium in the fluid system due to fluid pathways growth—is a key factor driving metal precipitation. (4) Integrated research. Methodology involves integrating macro and microscopic examination of ore control structures, integrating geological history and stress analysis, combining local and regional analyses, adopting shallow and deep perspectives, and employing a multidisciplinary, multiscale approach to study various ore-controlling factors. (5) Geological mapping. Methodology involves using structure-alteration-mineralization network mapping to characterize alteration-mineralization rock blocks in terms of geometric parameters for ore control structures (such as type, shape, size, occurrence, spacing), and performing quantitative analyses (such as topological analysis of hydrothermal vein-fracture systems, 3D geometric analysis of ore bodies) to determine ore-control structural frameworks and permeability structures and reveal the connectivity of mineralization deformation networks and their ore-forming potential. (6) Numerical modeling. Methodology involves developing geological models, selecting appropriate thermodynamic parameters and dynamic boundary conditions, and utilizing methods such as HCh and COMSOL to perform quantitative simulation of spatiotemporal variations in fluid flow, heat-mass transfer, stress deformation, and chemical reactions during ore formation. This is an effective approach to unveil the mechanism of ore formation controlled by structure-fluid coupling and ore localization pattern, predict ore-forming centers, and identify mineral exploration targets. Based on the above principles, this paper proposes a research methodology for model building, focusing on deriving metallogenic models and ore deposition patterns based on structure-fluid coupling control. Briefly, hydrothermal veins-fracture systems and structure-alteration-mineralization networks are selected as primary research subjects. Research methods include geometric description, kinematic assessment, rheological/dynamic analyses, and thermodynamic synthesis, seeking to delineate ore-control structural frameworks, identify mineralization centers, trace the developments of ore-forming fluid pathways and various mineralization styles, and reveal the spatiotemporal evolution patterns of permeability structures. Additionally, the causal relationship between tectonic reactivation and ore localization is explored. Finally, a metallogenic model based on structure-fluid coupling is constructed to support strategic mineral exploration. This research methodology was applied for mineral prediction in the Jiaojia gold field, Jiaodong Peninsula; its validity and effectiveness were tested and approved.

关键词

热液裂隙-脉系统 / 构造-蚀变-矿化网络 / 渗透性结构与成矿定位 / 流体通道和矿床增量生长 / 构造-流体耦合成矿模式

Key words

hydrothermal fracture and vein system / structure-alteration-mineralization network / permeability structure and mineralization localization / incremental growth of fluid pathway and ore deposits / a metallogenic model based on structure-fluid coupling

中图分类号

P611;P613;P614

引用本文

导出引用
杨立强 , 杨伟 , 张良 , . 热液成矿系统构造控矿理论. 地学前缘. 2024, 31(1): 239-266 https://doi.org/10.13745/j.esf.sf.2024.1.40
Liqiang YANG, Wei YANG, Liang ZHANG, et al. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications[J]. Earth Science Frontiers. 2024, 31(1): 239-266 https://doi.org/10.13745/j.esf.sf.2024.1.40

参考文献

[1]
翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 13-27.
[2]
WYBORN L A I, GALLAGHER R, JAQUES A L, et al. Developing metallogenic geographic information systems: examples from Mount Isa, Kakadu and Pine Creek[C]// Proceedings of the Australasian Institute of Mining and Metallurgy Annual Conference, Darwin. 1994, 1: 129-133.
[3]
翟裕生. 成矿系统论[M]. 北京: 地质出版社, 2010: 313.
[4]
MCCUAIG T C, HRONSKY J M A. The mineral system concept: the key to exploration targeting[J]. Applied Earth Science IMM Transactions Section B, 2014, 18(2): 153-175.
[5]
WYMAN D A, CASSIDY K F, HOLLINGS P. Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy[J]. Ore Geology Review, 2016, 78: 322-335.
[6]
ZHAO C, HOBBS B E, MÜHLHAUS H B, et al. Computer simulations of coupled problems in geological and geochemical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(29/30): 3137-3152.
[7]
ORD A, HOBBS B E, LESTER D R. The mechanics of hydrothermal systems: I. Ore systems as chemical reactors[J]. Ore Geology Reviews, 2012, 49: 1-44.
[8]
翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 214.
[9]
陈国达. 成矿构造研究法[M]. 北京: 地质出版社, 1978: 413.
[10]
SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural geology, 1996, 18(8): 1031-1042.
[11]
NGUYEN P T, HARRIS L B, POWELL C M, et al. Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia[J]. Journal of Structural Geology, 1998, 20(12): 1625-1640.
[12]
邓军, 翟裕生, 杨立强, 等. 剪切带构造-流体-成矿系统动力学模拟[J]. 地学前缘, 1999, 6(1): 115-127.
[13]
邓军, 杨立强, 翟裕生, 等. 构造-流体-成矿系统及其动力学的理论格架与方法体系[J]. 地球科学: 中国地质大学学报, 2000, 25(1): 71-78.
[14]
杨立强, 王光杰, 张中杰. 胶东金矿集中区岩石圈结构与深部成矿作用[J]. 地球科学: 中国地质大学学报, 2000, 25(4): 421-427.
[15]
ZHANG S, COX S F. Enhancement of fluid permeability during shear deformation of a synthetic mud[J]. Journal of Structural Geology, 2000, 22(10): 1385-1393.
[16]
DENG J, YANG L Q, SUN Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica (English Edition), 2003, 77(4): 537-546.
[17]
BLENKINSOP T G. Orebody geometry in lode gold deposits from Zimbabwe: implications for fluid flow, deformation and mineralization[J]. Journal of Structural Geology, 2004, 26(6/7): 1293-1301.
[18]
YANG L Q, DENG J, WANG J G, et al. Control of deep tectonics on the superlarge deposits in China[J]. Acta Geologies Sinica (English Edition), 2004, 78(2): 358-367.
[19]
邓军, 陈玉民, 刘钦, 等. 胶东三山岛断裂带金成矿系统与资源勘查[M]. 北京: 地质出版社, 2010: 371.
[20]
杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.
[21]
YANG L Q, DENG J, QIU K F, et al. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: constraints from petrology, geochemistry, and zircon U-Pb-Hf isotopic systematics[J]. Journal of Asian Earth Sciences, 2015, 98: 320-341.
[22]
杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446.
[23]
DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: an overview from the Giant Jiaodong gold province, China[J]. Geological Journal, 2019, 54(1): 378-391.
[24]
YANG L Q, DENG J, GROVES D I, et al. Metallogenic ‘factories’ and resultant highly anomalous mineral endowment on the craton margins of China[J]. Geoscience Frontiers, 2022, 13(2): 101339.
[25]
PETERS S G. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits[R]// Open-file report, 2001-151. Reston: US Geological Survey, 2001: 40.
[26]
韩润生. 初论构造成矿动力学及其隐伏矿定位预测研究内容和方法[J]. 地质与勘探, 2003, 39(1): 5-9.
[27]
CHAUVET A. Structural control of ore deposits: the role of pre-existing structures on the formation of mineralised vein systems[J]. Minerals, 2019, 9(1): 56.
[28]
DENG J, WANG Q, LIU X, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica (English Edition), 2022, 96(6): 1801-1820.
[29]
DENG J, WANG Q F, ZHANG L, et al. Metallogenetic model of Jiaodong-type gold deposits, eastern China[J]. Science China Earth Sciences, 2023, 66(10): 1-24.
[30]
SUN Z, WANG P, DENG J, et al. Composite metallogenic systems in the Weihai area of Shandong and evolution of continental dynamic regimes[J]. Acta Geologica Sinica (English Edition), 2007, 81(2): 312-321.
[31]
ABDELRAZEK M, BENEDICTO A, FAYEK M, et al. Permeability network, alteration and mineralization of the Spitfire basement-hosted uranium prospect, Western Athabasca, Canada[C]// Life with ore deposits on Earth. Proceedings of the 15th SGA biennial meeting, 2019, Vols 1/2/3/4. Glasgow:University of Glasgow, 2019: 1175-1178.
[32]
ZHANG L, WEINBERG R F, YANG L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: a focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441.
[33]
SIBSON R H, ROBERT F, POULSEN K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 1988, 16(6): 551-555.
[34]
WILKINSON J J, JOHNSTON J D. Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation[J]. Geology, 1996, 24(5): 395-398.
[35]
MICKLETHWAITE S, COX S F. Fault-segment rupture, aftershock-zone fluid flow, and mineralization[J]. Geology, 2004, 32(9): 813-816.
[36]
GHISETTI F C, SIBSON R H. Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new?[J]. Journal of Structural Geology, 2006, 28(11): 1994-2010.
[37]
GHISETTI F C, SIBSON R H. Erratum to “Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new?”[J]. Journal of Structural Geology, 2007, 29(5): 918-920.
[38]
COX S F. Injection-driven swarm seismicity and permeability enhancement: implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes: an invited paper[J]. Economic Geology, 2016, 111(3): 559-587.
[39]
王义天, 毛景文, 李晓峰, 等. 与剪切带相关的金成矿作用[J]. 地学前缘, 2004, 11(2): 393-400.
[40]
PETERSON E C, MAVROGENES J A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea[J]. Geology, 2014, 42(5): 383-386.
[41]
WEATHERLEY D K, HENLEY R W. Flash vaporization during earthquakes evidenced by gold deposits[J]. Nature Geoscience, 2013, 6(4): 294-298.
[42]
SANCHEZ-ALFARO P, REICH M, DRIESNER T, et al. The optimal windows for seismically-enhanced gold precipitation in the epithermal environment[J]. Ore Geology Reviews, 2016, 79: 463-473.
[43]
WILLIAMS J N, TOY V G, SMITH S A F, et al. Fracturing, fluid-rock interaction and mineralisation during the seismic cycle along the Alpine Fault[J]. Journal of Structural Geology, 2017, 103: 151-166.
[44]
COX S F, RUMING K. The St Ives mesothermal gold system, western Australia: a case of golden after-shocks?[J]. Journal of Structural Geology, 2004, 26(6/7): 1109-1125.
[45]
王偲瑞. 胶西北金矿床构造-流体成矿动力学[D]. 北京: 中国地质大学(北京), 2020.
[46]
BONS P D, ELBURG M A, GOMEZ-RIVAS E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33-62.
[47]
GROVES D I, SANTOSH M, MÜLLER D, et al. Mineral systems: their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration[J]. Geosystems and Geoenvironment, 2022, 1(1): 100001.
[48]
VEARNCOMBE J, ZELIC M. Structural paradigms for gold: do they help us find and mine?[J]. Applied Earth Science, Taylor & Francis, 2015, 124(1): 2-19.
[49]
STREIT J E, COX S F. Fluid pressures at hypocenters of moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B2): 2235-2243.
[50]
COX S F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[C]// HEDENQUIST J W, THOMPSON J F H. One hundred anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 39-76.
[51]
MICKLETHWAITE S, SHELDON H A, BAKER T. Active fault and shear processes and their implications for mineral deposit formation and discovery[J]. Journal of Structural Geology, 2010, 32(2): 151-165.
[52]
池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18.
[53]
INGEBRITSEN S E, APPOLD M S. The physical hydrogeology of ore deposits[J]. Economic Geology, 2012, 107(4): 559-584.
[54]
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338(6114): 1613-1616.
[55]
WEIS P, DRIESNER T, COUMOU D, et al. Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison[J]. Geofluids, 2014, 14(3): 347-371.
[56]
江小军, 王忠强, 李超, 等. 滇东北会泽超大型铅锌矿Re-Os同位素特征及喜山期成矿作用动力学背景探讨[J]. 岩矿测试, 2018, 37(4): 448-461.
[57]
陈世清. 对称经济学[M]. 北京: 中国时代经济出版社, 2010: 224.
[58]
HOBBS B E, ORD A, REGENAUER-LIEB K. The thermodynamics of deformed metamorphic rocks: a review[J]. Journal of Structural Geology, 2011, 33(5): 758-818.
[59]
LESTER D R, ORD A, HOBBS B E. The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions[J]. Ore Geology Reviews, 2012, 49: 45-71.
[60]
FAZEL E T, PAŠAVA J, WILKE F D H, et al. Source of gold and ore-forming processes in the Zarshuran gold deposit, NW Iran: insights from in situ elemental and sulfur isotopic compositions of pyrite, fluid inclusions, and O-H isotopes[J]. Ore Geology Reviews, 2023, 156: 105382.
[61]
JOLLEY S J, FREEMAN S R, BARNICOAT A C, et al. Structural controls on Witwatersrand gold mineralisation[J]. Journal of Structural Geology, 2004, 26(6/7): 1067-1086.
[62]
GOLDFARB R J, GROVES D I, GARDOLL S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75.
[63]
QIU Y M, GROVES D I, MCNAUGHTON N J, et al. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China Craton, China[J]. Mineralium Deposita, 2002, 37: 283-305.
[64]
GUO P, SANTOSH M, LI S R. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24(3/4): 1172-1202.
[65]
YU G P, XU T, AI Y S, et al. Significance of crustal extension and magmatism to gold deposits beneath Jiaodong Peninsula, eastern North China Craton: seismic evidence from receiver function imaging with a dense array[J]. Tectonophysics, 2020, 789: 228532.
[66]
YANG L Q. Editorial for special issue “Polymetallic metallogenic system”[J]. Minerals, 2019, 9(7): 435.
[67]
DENG J, WANG Q F, SUN X, et al. Tibetan ore deposits: a conjunction of accretionary orogeny and continental collision[J]. Earth-Science Reviews, 2022: 104245.
[68]
YANG L Q, DENG J, GUO L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the Giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602.
[69]
DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the Giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274.
[70]
COX S F. The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Washington: Society of Economic Geologists, 2020, 21: 25-82.
[71]
赵海, 赵可广, 马耀丽, 等. 胶东新城金矿地质构造特征及深部找矿方向[J]. 地质力学学报, 2004, 10(2): 129-136.
[72]
陆丽娜, 范宏瑞, 胡芳芳, 等. 胶西北新城金矿成矿流体与矿床成因[J]. 矿床地质, 2011, 30(3): 522-532.
[73]
宋明春, 宋英昕, 崔书学, 等. 胶东焦家特大型金矿床深、浅部矿体特征对比[J]. 矿床地质, 2011, 30(5): 923-932.
[74]
陈耀煌, 孙华山, 罗辉隆. 胶西北上庄金矿断裂岩体控矿规律[J]. 地质科技情报, 2012, 31(4): 55-60.
[75]
卫清, 范宏瑞, 蓝廷广, 等. 胶东寺庄金矿床成因: 流体包裹体与石英溶解度证据[J]. 岩石学报, 2015, 31(4): 1049-1062.
[76]
王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[77]
宋明春, 宋英昕, 丁正江, 等. 胶东焦家和三山岛巨型金矿床的发现及有关问题讨论[J]. 大地构造与成矿学, 2019, 43(1): 92-110.
[78]
魏瑜吉, 邱昆峰, 郭林楠, 等. 胶东大尹格庄金矿床成矿流体特征与演化[J]. 岩石学报, 2020, 36(6): 1821-1832.
[79]
杨喜安, 赵国春, 宋玉波, 等. 胶东牟平-乳山成矿带拆离断层控矿特征及找矿方向[J]. 大地构造与成矿学, 2011, 35(3): 339-347.
[80]
CHEN B H, DENG J, JI X Z. Time limit of gold mineralization in Muping-Rushan belt, eastern Jiaodong Peninsula, China: evidence from muscovite Ar-Ar dating[J]. Minerals, 2022, 12(3): 278.
[81]
YAN Y T, ZHANG N, LI S R, et al. Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, eastern China[J]. Geoscience Frontiers, 2014, 5(2): 205-213.
[82]
李经纬, 邱昆峰, 马明, 等. 胶东旧店金矿床赋矿岩浆岩岩石成因及其地质意义[J]. 岩石学报, 2023, 39(2): 393-410.
[83]
邹为雷, 沈远超, 曾庆栋, 等. 蓬家夼金矿与发云夼金矿地质地球化学特征对比研究: 兼议层间滑动角砾岩型金矿成矿模式[J]. 黄金, 2001(3): 1-7.
[84]
李国华, 丁正江, 宋明春, 等. 胶东新类型金矿: 辽上黄铁矿碳酸盐脉型金矿[J]. 地球学报, 2017, 38(3): 423-429.
[85]
宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236.
[86]
阿尔伯特ALBERT N N. 胶东平里店金矿床地质-地球化学特征[D]. 北京: 中国地质大学(北京), 2016.
[87]
贾飞, 胡跃亮, 王永锋, 等. 基于Vulcan软件的山东莱州留村金矿区三维建模及资源量估值[J]. 地质与勘探, 2022, 58(1): 12-23.
[88]
宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 地质学报, 2015, 89(2): 365-383.
[89]
宋明春, 杨立强, 范宏瑞, 等. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J]. 地质通报, 2022, 41(6): 903-935.
[90]
宋英昕, 宋明春, 丁正江, 等. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4-18.
[91]
ROBERT F, POULSEN K H. Vein formation and deformation in greenstone gold deposits[J]. Society of Economic Geologists Review, 2001, 14: 111-155.
[92]
BLENKINSOP T G, OLIVER N H S, DIRKS P G H M, et al. Structural geology applied to the evaluation of hydrothermal gold deposits[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Washington: Society of Economic Geologists, 2020: 1-23.
[93]
TAYLOR W L, POLLARD D D, AYDIN A. Fluid flow in discrete joint sets: field observations and numerical simulations[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28983-29006.
[94]
MATTHÄI S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix[J]. Geophysical Research Letters, 2004, 31(7): 221-237.
[95]
SINGHAL B B S, GUPTA R P. Applied hydrogeology of fractured rocks[M]. 2nd ed. Berlin: Springer Science & Business Media, 2010: 414.
[96]
KOLB J, ROGERS A, MEYER F M, et al. Development of fluid conduits in the auriferous shear zones of the Hutti gold mine, India: evidence for spatially and temporally heterogeneous fluid flow[J]. Tectonophysics, 2004, 378(1/2): 65-84.
[97]
HICKEY K A, AHMED A D, BARKER S L L, et al. Fault-controlled lateral fluid flow underneath and into a Carlin-type gold deposit: isotopic and geochemical footprints[J]. Economic Geology, 2014, 109(5): 1431-1460.
[98]
ARANCIBIA G, FUJITA K, HOSHINO K, et al. Hydrothermal alteration in an exhumed crustal fault zone: testing geochemical mobility in the Caleta Coloso fault, Atacama fault system, northern Chile[J]. Tectonophysics, 2014, 623: 147-168.
[99]
CHI G X, XUE C J. An overview of hydrodynamic studies of mineralization[J]. Geoscience Frontiers, 2011, 2(3): 423-438.
[100]
MICKLETHWAITE S, FORD A, WITT W, et al. The where and how of faults, fluids and permeability-insights from fault stepovers, scaling properties and gold mineralisation[J]. Geofluids, 2015, 15(1/2): 240-251.
[101]
WIBBERLEY C A J, SHIPTON Z K. Fault zones: a complex issue[J]. Journal of Structural Geology, 2010, 32(11): 1554-1556.
[102]
陈小龙, 吕古贤, 唐朝永, 等. 显微构造研究在新城金矿成矿深度测算中的应用[J]. 大地构造与成矿学, 2011, 35(4): 612-617.
[103]
CATHLES L M, ADAMS J J. Fluid flow and petroleum and mineral resources in the upper (< 20 km) continental crust[C]// HEDENQUIST J W, THOMPSON J F H. One hundered anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 77-110.
[104]
SODEN A M, SHIPTON Z K, LUNN R J, et al. Brittle structures focused on subtle crustal heterogeneities: implications for flow in fractured rocks[J]. Journal of the Geological Society, 2014, 171(4): 509-524.
[105]
CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028.
[106]
INGEBRITSON S E, GLEESON T. Crustal permeability: introduction to the special issue[J]. Geofluids, 2015, 15(1/2): 1-10.
[107]
SHIPTON Z K, COWIE P A. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone[J]. Journal of Structural Geology, 2003, 25(3): 333-344.
[108]
SAFFER D M. The permeability of active subduction plate boundary faults[J]. Geofluids, 2015, 15(1/2): 193-215.
[109]
FOROOZAN R, ELSWORTH D, FLEMINGS P, et al. The role of permeability evolution in fault zones on the structural and hydro-mechanical characteristics of shortening basins[J]. Marine and Petroleum Geology, 2012, 29(1): 143-151.
[110]
GABOURY D. Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments? Insight from volatiles in fluid inclusions[J]. Geology, 2013, 41(12): 1207-1210.
[111]
SELVARAJA V, CARUSO S, FIORENTINI M L, et al. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia[J]. Geology, 2017, 45(8): 691-694.
[112]
XUE Y X, CAMPBELL I, IRELAND T R, et al. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J]. Geology, 2013, 41(7): 791-794.
[113]
LARGE S J E, BAKKER E Y N, WEIS P, et al. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend[J]. Geology, 2016, 44(12): 1015-1018.
[114]
LEE C T A. Copper conundrums[J]. Nature Geoscience, 2014, 7(1): 10-11.
[115]
HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566.
[116]
HOU Z Q, XU B, ZHANG H J, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4(1): 293.
[117]
WEBBER A P, ROBERTS S, TAYLOR R N, et al. Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction[J]. Geology, 2013, 41(1): 87-90.
[118]
HOU Z Q, WANG Q F, ZHANG H J, et al. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits[J]. National Science Review, 2023, 10(3): nwac257.
[119]
TASSARA S, GONZÁLEZ-JIMÉNEZ J M, REICH M, et al. Plume-subduction interaction forms large auriferous provinces[J]. Nature Communications, 2017, 8(1): 843.
[120]
FIORENTINI M L, LAFLAMME C, DENYSZYN S, et al. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust[J]. Geochimica et Cosmochimica Acta, 2018, 223: 175-197.
[121]
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
[122]
WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6(11): 917-925.
[123]
RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11): 911-916.
[124]
GUO H, AUDÉTAT A, DOLEJŠ D. Solubility of gold in oxidized, sulfur-bearing fluids at 500-850 ℃ and 200-230 MPa: a synthetic fluid inclusion study[J]. Geochimica et Cosmochimica Acta, 2018, 222: 655-670.
[125]
MUNTEAN J L, CASSINERIO M D, AREHART G B, et al. Fluid pathways at the Turquoise Ridge Carlin-type gold deposit, Getchell district, Nevada[C]// Smart science for exploration and mining. Proceedings of the tenth biennial meeting of the Society of Geology Applied to Mineral Deposits, Townsville, Australia. 2009: 251-252.
[126]
DENG J, YANG L Q, GE L S, et al. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area[J]. Progress in Natural Science, Taylor & Francis, 2006, 16(8): 777-784.
[127]
YANG L Q, DENG J, WANG Q F, et al. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula, eastern China[J]. Acta Geologica Sinica (English Edition), 2006, 80(3): 400-411.
[128]
YANG L Q, DENG J, ZHANG J, et al. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping fault zone, Shandong Province, China[J]. Acta Petrologica Sinica, 2007, 23(1): 153-160.
[129]
GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153.
[130]
刘石年. 山东玲珑式金矿床矿体空间定位形式及其形成机制的探讨[J]. 地球科学: 中国地质大学学报, 1984(4): 47-56.
[131]
吕古贤, 孔庆存. 胶东玲珑-焦家式金矿地质[M]. 北京: 科学出版社, 1993: 253
[132]
胡受奚, 叶瑛, 刘红樱. 地体构造对金区域成矿的重要意义[J]. 黄金地质, 2001, 7(4): 1-8.
[133]
汪劲草, 王国富, 汤静如. 玲珑-焦家地区金矿成矿构造体制的新认识[J]. 桂林工学院学报, 2002(1): 1-4.
[134]
DENG J, WANG Q F, YANG L Q, et al. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China[J]. Acta Geologica Sinica (English Edition), 2008, 82(4): 769-780.
[135]
CHARLES N, AUGIER R, GUMIAUX C, et al. Timing, duration and role of magmatism in wide rift systems: insights from the Jiaodong Peninsula (China, East Asia)[J]. Gondwana Research, 2013, 24(1): 412-428.
[136]
WEINBERG R F, HODKIEWICZ P F, GROVES D I. What controls gold distribution in Archean terranes?[J]. Geology, 2004, 32(7): 545-548.
[137]
WEINBERG R F. Melt segregation and extraction from deforming plutons[C]// AGU Fall Meeting Abstracts. 2006: V23D-0663.
[138]
BIERLEIN F P, MURPHY F C, WEINBERG R F, et al. Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, western Australia[J]. Mineralium Deposita, 2006, 41: 107-126.
[139]
王晨光, 杨立强, 和文言. 滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义[J]. 岩石学报, 2017, 33(7): 2213-2224.
[140]
GROVES D I, SANTOSH M, GOLDFARB R J, et al. Structural geometry of orogenic gold deposits: implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 2018, 9(4): 1163-1177.
[141]
COX S F, SUN S S, ETHERIDGE M A, et al. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine, central Victoria, Australia[J]. Economic Geology, 1995, 90(6): 1722-1746.
[142]
RIDLEY J, MIKUCKI E J, GROVES D I. Archean lode-gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal systems[J]. Ore Geology Reviews, 1996, 10(3/4/5/6): 279-293.
[143]
RHYS D, VALLI F, BURGESS R, et al. Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend[J]. New Concepts and Discoveries, 2015, 1: 333-389.
[144]
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
[145]
KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584.
[146]
CRAW D. Gilded by earthquakes[J]. Nature Geoscience, 2013, 6(4): 248-250.
[147]
徐兴旺, 牛磊, 洪涛, 等. 流体构造动力学与成矿作用[J]. 地质力学学报, 2019, 25(1): 1-8.
[148]
FIELDING I O H, JOHNSON S P, ZI J W, et al. Gold metallogeny of the northern Capricorn Orogen: the relationship between crustal architecture, fault reactivation and hydrothermal fluid flow[J]. Ore Geology Reviews, 2020, 122: 103515.
[149]
MCCUAIG T C, KERRICH R. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics[J]. Ore Geology Reviews, 1998, 12(6): 381-453.
[150]
GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic terranes[M]//HEDENQUIST J W, THOMPSON J F H, One hundred anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 407-450.
[151]
孙晓明, 石贵勇, 翟伟, 等. 青藏高原喜马拉雅期碰撞造山型金矿矿化特征和动力学机制: 以哀牢山金矿带为例[J]. 矿床地质, 2010, (S1): 995-996.
[152]
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
[153]
GROVES D I, GOLDFARB R J, SANTOSH M. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings[J]. Geoscience Frontiers, 2016, 7(3): 303-314.
[154]
MONCADA D, RIMSTIDT J D, BODNAR R J. How to form a giant epithermal precious metal deposit: relationships between fluid flow rate, metal concentration of ore-forming fluids, duration of the ore-forming process, and ore grade and tonnage[J]. Ore Geology Reviews, 2019, 113: 103066.
[155]
LANG J R, BAKER T, HART C J R, et al. An exploration model for intrusion-related gold systems[J]. SEG Newsletter, 2000(40): 1-15.
[156]
MUNTEAN J L. The Carlin gold system: applications to exploration in Nevada and beyond[M]//MUNTEAN J L. Diversity in Carlin-style gold deposits. Washington: Society of Economic Geologists, 2018, 20: 39-88.
[157]
SU W C, DONG W D, ZHANG X C, et al. Carlin-type gold deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China[J]. Reviews in Economic Geology, 2018, 20: 157-185.
[158]
GROVES D I, VIELREICHER R M, GOLDFARB R J, et al. Controls on the heterogeneous distribution of mineral deposits through time[J]. Geological Society, London, Special Publications, 2005, 248(1): 71-101.
[159]
许德如, 叶挺威, 王智琳. 成矿作用的空间分布不均匀性及其控制因素探讨[J]. 大地构造与成矿学, 2019, 43(3): 368-388.
[160]
PHILLIPS G N, VEARNCOMBE J R, ANAND R R, et al. The role of geoscience breakthroughs in gold exploration success: Yilgarn Craton, Australia[J]. Ore Geology Reviews, 2019, 112: 103009.
[161]
FYFE W S, KERRICH R. Fluids and thrusting[J]. Chemical Geology, 1985, 49(1/2/3): 353-362.
[162]
SPENCER J E, WELTY J W. Possible controls of base- and precious-metal mineralization associated with Tertiary detachment faults in the Lower Colorado River trough, Arizona and California[J]. Geology, 1986, 14(3): 195-198.
[163]
ROBERT F, BOULLIER A M, FIRDAOUS K. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12861-12879.
[164]
CAMERON E M. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1. Conceptual model[J]. Journal of Geochemical Exploration, 1989, 31(2): 135-147.
[165]
HODGSON C J. The structure of shear-related, vein-type gold deposits: a review[J]. Ore Geology Reviews, 1989, 4(3): 231-273.
[166]
BONNEMAISON M, MARCOUX E. Auriferous mineralization in some shear-zones: a three-stage model of metallogenesis[J]. Mineralium Deposita, 1990, 25: 96-104.
[167]
COX S F, WALL V J, ETHERIDGE M A, et al. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits: examples from the Lachlan Fold Belt in central Victoria, Australia[J]. Ore Geology Reviews, 1991, 6(5): 391-423.
[168]
BOWERS T S. The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2417-2434.
[169]
CLINE J S, BODNAR R J, RIMSTIDT J D. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: application to epithermal gold deposits[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B6): 9085-9103.
[170]
FALEIROS F M, DA CRUZ CAMPANHA G A, DA SILVEIRA BALLO R M, et al. Fault-valve action and vein development during strike-slip faulting: an example from the Ribeira shear zone, southeastern Brazil[J]. Tectonophysics, 2007, 438(1/2/3/4): 1-32.
[171]
STILLWELL F L. Replacement in the Bendigo quartz veins and its relation to gold deposits[J]. Economic Geology, 1918, 13(2): 100-111.
[172]
GROVES D I, PHILLIPS G N. The genesis and tectonic control on Archaean gold deposits of the western Australian shield: a metamorphic replacement model[J]. Ore Geology Reviews, 1987, 2(4): 287-322.
[173]
COLVINE A C. An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada[J]. Economic Geology Monograph, 1989, 6: 37-53.
[174]
VEARNCOMBE J R. Shear zones, fault networks, and Archean gold[J]. Geology, 1998, 26(9): 855-858.
[175]
LI N, YANG L Q, GROVES D I, et al. Tectonic and district to deposit-scale structural controls on the Ge’erke orogenic gold deposit within the Dashui-Zhongqu district, West Qinling Belt, China[J]. Ore Geology Reviews, 2020, 120: 103436.
[176]
肖庆辉. 国外变质岩构造研究概况[J]. 辽宁区域地质, 1981(1): 1-29.
[177]
TRIPP G I, VEARNCOMBE J R. Fault/fracture density and mineralization: a contouring method for targeting in gold exploration[J]. Journal of Structural Geology, 2004, 26(6/7): 1087-1108.
[178]
郑义. 热液矿床超大比例尺构造-蚀变-矿化填图: 基本原理与注意事项[J]. 地球科学, 2022, 47(10): 3603-3615.
[179]
MARTEL E. The importance of structural mapping in ore deposits: a new perspective on the Howard's Pass Zn-Pb district, Northwest Territories, Canada[J]. Economic Geology, 2017, 112(6): 1285-1304.
[180]
张微, 杨金中, 方洪宾, 等. 东昆仑—阿尔金地区遥感地质解译与成矿预测[J]. 西北地质, 2010, 43(4): 288-294.
[181]
PLATTEN I M, DOMINY S C. Geological mapping in the evaluation of structurally controlled gold veins:a case study from the Dolgellau gold belt, North Wales, United Kingdom[C]// Proceedings of world gold conference. Gauteng: The Southern African Institute of Mining and Metallurgy, 2009: 151-167.
[182]
滕寿仁, 董哲, 王营, 等. 1∶5万三维地质填图方法技术在本溪矿集区的应用[J]. 地质与资源, 2015, 24(4): 383-387.
[183]
傅昭仁, 李德威, 李先富, 等. 变质核杂岩及剥离断层的控矿构造解析[M]. 武汉: 中国地质大学出版社, 1992: 110.
[184]
SAUMUR B M. Structure and dynamics of intrusion-hosted magmatic Ni-Cu sulphide deposits: insights from analogue experiments & Voisey's Bay (Canada)[D]. Melbourne: Monash University, 2014: 178.
[185]
张田, 张岳桥. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 2007, 13(2): 323.
[186]
张田, 张岳桥. 胶北隆起晚中生代构造-岩浆演化历史[J]. 地质学报, 2008, (9): 1210-1228.
[187]
DENG J, WANG C M, BAGAS L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong Peninsula, China: constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006.
[188]
DENG J, FANG Y, YANG L Q, et al. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems[J]. Acta Geologica Sinica (English Edition), 2001, 75(2): 220-232.
[189]
YIGIT O, NELSON E P, HITZMAN M W, et al. Structural controls on Carlin-type gold mineralization in the Gold Bar district, Eureka County, Nevada[J]. Economic Geology, 2003, 98(6): 1173-1188.
[190]
吕庆田, 孟贵祥, 严加永, 等. 成矿系统的多尺度探测: 概念与进展: 以长江中下游成矿带为例[J]. 中国地质, 2019, 46(4): 673-689.
[191]
TRIPP G I. Stratigraphy and structure in the Neoarchaean of the Kalgoorlie district, Australia: critical controls on greenstone-hosted gold deposits[D]. Queensland: James Cook University, 2013: 773.
[192]
BAI L X, XU X W, LUO H, et al. Angular unconformity of the Late Quaternary strata in the Hetao Basin, North of the Ordos Block (West China): timing and its tectonic implications[J]. Frontiers in Earth Science, Frontiers Media SA, 2021, 9: 646789.
[193]
张岳桥, 施炜, 李建华, 等. 大巴山前陆弧形构造带形成机理分析[J]. 地质学报, 2010, 84(9): 1300-1315.
[194]
池三川. 隐伏矿床(体)的寻找[M]. 武汉: 中国地质大学出版社, 1988: 117.
[195]
单文琅, 宋鸿林, 傅昭仁, 等. 构造变形分析的理论、方法和实践[M]. 武汉: 中国地质大学出版社, 1991: 159.
[196]
曾庆丰. 构造矿床学: 曾庆丰论选构造矿床学: 曾庆丰论著选编[M]. 北京: 科学出版社, 2016: 619.
[197]
杨立强, 邓军, 方云, 等. 构造-流体耦合成矿效应计算模拟[J]. 地球学报, 1999, 20(增刊): 433-437.
[198]
梁一鸿, 孙德育, 张业明. 内蒙古中部地区金矿床控矿构造类型[J]. 黄金, 1993, 14(2): 5-9.
[199]
魏赛拉加. 胶东郭城地区金矿床构造控矿规律研究及找矿方向[D]. 北京: 中国地质大学(北京), 2014.
[200]
李瑞红. 焦家金矿带构造控矿模式[D]. 北京: 中国地质大学(北京), 2017: 195.
[201]
CALHOUN J. Fabric and microstructural analysis of the Loch Borralan pluton, Northwest Highlands, Scotland[D]. Milwaukee: The University of Wisconsin-Milwaukee, 2014.
[202]
KASSEM O M K, HAMIMI Z, ABOELKHAIR H, et al. Microstructural study and strain analysis of deformed Neoproterozoic lithologies in the Um Junud area, Northern Nubian Shield[J]. Geotectonics, 2019, 53: 125-139.
[203]
KRUCKENBERG S C, MICHELS Z D, PARSONS M M. From intracrystalline distortion to plate motion: unifying structural, kinematic, and textural analysis in heterogeneous shear zones through crystallographic orientation-dispersion methods[J]. Geosphere, 2019, 15(2): 357-381.
[204]
DE ROO J A. The Elura Ag-Pb-Zn mine in Australia: ore genesis in a slate belt by syndeformational metasomatism along hydrothermal fluid conduits[J]. Economic Geology, 1989, 84(2): 256-278.
[205]
LIU J, ZHAO G, XU G, et al. Structural control and genesis of gold deposits in the Liaodong Peninsula, northeastern North China Craton[J]. Ore Geology Reviews, 2020, 125: 103672.
[206]
HASRIA H, SIDIK M, AWADH S M, et al. Orogenic gold deposit in metamorphic rocks: minerals and structural control at Rarowatu area, Southeastern Arm of Sulawesi, Indonesia[J]. The Iraqi Geological Journal, 2023, 56(1B): 16-31.
[207]
孙岩. 裂隙岩相学研究: 以美国加州深钻岩心的扫描电镜观察为例[J]. 地质论评, 1990, 36(3): 249-254.
[208]
邓军, 杨立强, 方云, 等. 成矿系统嵌套分形结构和自有序效应[J]. 地学前缘, 2000, 7(1): 133-146.
[209]
HODKIEWICZ P F, WEINBERG R F, GARDOLL S J, et al. Complexity gradients in the Yilgarn Craton: fundamental controls on crustal-scale fluid flow and the formation of world-class orogenic-gold deposits[J]. Australian Journal of Earth Sciences, 2005, 52(6): 831-841.
[210]
HRONSKY J M A. Deposit-scale structural controls on orogenic gold deposits: an integrated, physical process-based hypothesis and practical targeting implications[J]. Mineralium Deposita, 2020, 55(2): 197-216.
[211]
SIBSON R H, SCOTT J. Stress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 293-306.
[212]
THÉBAUD N, SUGIONO D, LAFLAMME C, et al. Protracted and polyphased gold mineralisation in the Agnew district (Yilgarn Craton, western Australia)[J]. Precambrian Research, 2018, 310: 291-304.
[213]
STEINER A P, HICKEY K A. Fluid partitioning between veins/fractures and the host rocks in Carlin-type Au deposits: a significant control on fluid-rock interaction and Au endowment[J]. Mineralium Deposita, 2023, 58(4): 797-823.
[214]
HENZA A A, WITHJACK M O, SCHLISCHE R W. How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?[J]. Journal of Structural Geology, 2011, 33(9): 1312-1324.
[215]
WITHJACK M O, HENZA A A, SCHLISCHE R W. Three-dimensional fault geometries and interactions within experimental models of multiphase extension[J]. AAPG Bulletin, 2017, 101(11): 1767-1789.
[216]
陈兴鹏, 李伟, 吴智平, 等. “伸展-走滑”复合作用下构造变形的物理模拟[J]. 大地构造与成矿学, 2019, 43(6): 1106-1116.
[217]
DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407.
[218]
HENSTRA G A, KRISTENSEN T B, ROTEVATN A, et al. How do pre-existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway[J]. Basin Research, 2019, 31(6): 1083-1097.
[219]
GAWTHORPE R L, LEEDER M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12(3/4): 195-218.
[220]
NIXON C W, SANDERSON D J, DEE S J, et al. Fault interactions and reactivation within a normal-fault network at Milne Point, Alaska[J]. AAPG Bulletin, 2014, 98(10): 2081-2107.
[221]
ATKINSON B K. Subcritical crack growth in geological materials[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4077-4114.
[222]
POLLARD D D, AYDIN A. Progress in understanding jointing over the past century[J]. Geological Society of America Bulletin, 1988, 100(8): 1181-1204.
[223]
MORLEY C K. The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand[J]. Geological Society, London, Special Publications, 2017, 439(1): 413-445.
[224]
赵利, 徐旭辉, 方成名, 等. 中西部冲断带多尺度地球物理解释及其物理模拟实验[J]. 地球物理学报, 2017, 60(7): 2885-2896.
[225]
REEVE M T, BELL R E, DUFFY O B, et al. The growth of non-colinear normal fault systems: what can we learn from 3D seismic reflection data?[J]. Journal of Structural Geology, 2015, 70: 141-155.
[226]
DENG C, GAWTHORPE R L, FOSSEN H, et al. How does the orientation of a preexisting basement weakness influence fault development during renewed rifting? Insights from three-dimensional discrete element modeling[J]. Tectonics, 2018, 37(7): 2221-2242.
[227]
RILEY M S. Fracture trace length and number distributions from fracture mapping[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B8): B08414.
[228]
SANDERSON D J, NIXON C W. The use of topology in fracture network characterization[J]. Journal of Structural Geology, 2015, 72: 55-66.
[229]
ANDRESEN C A, HANSEN A, LE GOC R, et al. Topology of fracture networks[J]. Frontiers in Physics, 2013, 1: 7.
[230]
DUFFY O B, NIXON C W, BELL R E, et al. The topology of evolving rift fault networks: single-phase vs. multi-phase rifts[J]. Journal of Structural Geology, 2017, 96: 192-202.
[231]
DIMMEN V, ROTEVATN A, PEACOCK D C P, et al. Quantifying structural controls on fluid flow: insights from carbonate-hosted fault damage zones on the Maltese Islands[J]. Journal of Structural Geology, 2017, 101: 43-57.
[232]
MANZOCCHI T. The connectivity of two-dimensional networks of spatially correlated fractures[J]. Water Resources Research, 2002, 38(9): 1-1-1-20.
[233]
MICARELLI L, BENEDICTO A, WIBBERLEY C A J. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks[J]. Journal of Structural Geology, 2006, 28(7): 1214-1227.
[234]
王迪, 吴智平, 宋国奇, 等. 断裂网络体系拓扑结构与油气运移的关系: 以临南洼陷为例[J]. 中国矿业大学学报, 2021, 50(1): 154-162.
[235]
BLENKINSOP T G, KADZVITI S. Fluid flow in shear zones: insights from the geometry and evolution of ore bodies at Renco gold mine, Zimbabwe[J]. Geofluids, 2006, 6(4): 334-345.
[236]
任建业. 变形岩石中的运动学标志[J]. 地质科技情报, 1988(1): 23-30.
[237]
孙士军. 黔东北走滑断层之特征及形成机制分析[J]. 贵州地质, 1995, 12(3): 244-251.
[238]
傅昭仁, 蔡学林. 变质岩区构造地质学[M]. 北京: 地质出版社, 1996: 243.
[239]
JAPAS M S, GÓMEZ A L R, RUBINSTEIN N A. Unravelling the hydro-mechanical evolution of a porphyry-type deposit by using vein structures[J]. Ore Geology Reviews, 2021, 133: 104074.
[240]
SIBSON R H. Brittle failure mode plots for compressional and extensional tectonic regimes[J]. Journal of Structural Geology, 1998, 20(5): 655-660.
[241]
STEPHENS J R, MAIR J L, OLIVER N H S, et al. Structural and mechanical controls on intrusion-related deposits of the Tombstone gold belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types[J]. Journal of Structural Geology, 2004, 26(6): 1025-1041.
[242]
TCHALENKO J S. The evolution of kink-bands and the development of compression textures in sheared clays[J]. Tectonophysics, 1968, 6(2): 159-174.
[243]
ROBERTS R G. Ore deposit models#11. Archean lode gold deposits[J]. Geoscience Canada, 1987, 14(1): 37-52.
[244]
杨农, 陈正乐, 雷伟志, 等. 冀北燕山地区印支期构造特征研究[M]. 北京: 地质出版社, 1996: 70.
[245]
孙叶, 谭成轩. 构造应力场研究与实践[J]. 地质力学学报, 2001(3): 254-258.
[246]
GYSI A, MEI Y, DRIESNER T. Advances in numerical simulations of hydrothermal ore forming processes[J]. Geofluids, 2020, 2020: 1-4.
[247]
WU X, ZHENG Y, WU B, et al. Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: a surrogate modeling approach[J]. Agricultural Water Management, 2016, 163: 380-392.
[248]
BETHKE C M, LEE M K, QUINODOZ H, et al. Basin modeling with Basin2: a guide to using Basin2, B2plot, B2video, and B2view[R]. Springfield: University of Illinois, 1993: 1-225.
[249]
PRUESS K. Analysis of flow processes during TCE infiltration in heterogeneous soils at the Savannah River Site, Aiken, South Carolina[R]. Berkeley: Lawrence Berkeley National Lab, 1992.
[250]
CUI T. Formation mechanisms of unconformity-related uranium deposits: insights from numerical modeling[M]. Windsor: University of Windsor (Canada), 2012.
[251]
LEADER L D, WILSON C J L, ROBINSON J A. Structural constraints and numerical simulation of strain localization in the Bendigo goldfield, Victoria, Australia[J]. Economic Geology, 2013, 108(2): 279-307.
[252]
LI Q, ITO K, WU Z S, et al. COMSOL multiphysics: a novel approach to ground water modeling[J]. Groundwater, 2009, 47(4): 480-487.
[253]
SCHAUBS P M, RAWLING T J, DUGDALE L J, et al. Factors controlling the location of gold mineralisation around basalt domes in the Stawell corridor: insights from coupled 3D deformation-fluid-flow numerical models[J]. Australian Journal of Earth Sciences, 2006, 53(5): 841-862.
[254]
ZHANG Y H, ROBERTS P A, MURPHY B. Understanding regional structural controls on mineralization at the century deposit: a numerical modelling approach[J]. Journal of Geochemical Exploration, 2010, 106(1/2/3): 244-250.
[255]
POTMA W, ROBERTS P A, SCHAUBS P M, et al. Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modelling[J]. Australian Journal of Earth Sciences, 2008, 55(1): 101-122.
[256]
ZHANG Y H, ROBINSON J, SCHAUBS P M. Numerical modelling of structural controls on fluid flow and mineralization[J]. Geoscience Frontiers, 2011, 2(3): 449-461.
[257]
SHELDON H A, MICKLETHWAITE S. Damage and permeability around faults: implications for mineralization[J]. Geology, 2007, 35(10): 903-906.
[258]
ZHANG Y H, SORJONEN-WARD P, ORD A, et al. Fluid flow during deformation associated with structural closure of the Isa superbasin at 1575 Ma in the central and northern Lawn Hill platform, northern Australia[J]. Economic Geology, 2006, 101(6): 1293-1312.
[259]
EVANS K A, PHILLIPS G N, POWELL R. Rock-buffering of auriferous fluids in altered rocks associated with the Golden Mile-style mineralization, Kalgoorlie gold field, western Australia[J]. Economic Geology, 2006, 101(4): 805-817.
[260]
EVANS K A. A test of the viability of fluid-wall rock interaction mechanisms for changes in opaque phase assemblage in metasedimentary rocks in the Kambalda-St. Ives goldfield, western Australia[J]. Mineralium Deposita, 2010, 45(2): 207-213.
[261]
WHITE A J R, WATERS D J, ROBB L J. The application of P-T-X(CO2) modelling in constraining metamorphism and hydrothermal alteration at the Damang gold deposit, Ghana[J]. Journal of Metamorphic Geology, 2013, 31(9): 937-961.
[262]
PHILLIPS G N, EVANS K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004, 429(6994): 860-863.
[263]
HU S Y, EVANS K, CRAW D, et al. Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J]. Geology, 2017, 45(2): 167-170.
[264]
SHVAROV Y V, BASTRAKOV E N. HCh: a software package for geochemical equilibrium modelling. User's guide[J]. Australian Geological Survey Organisation, Record, 1999, 25: 61.
[265]
MERNAGH T P, BIERLEIN F P. Transport and precipitation of gold in Phanerozoic metamorphic terranes from chemical modeling of fluid-rock interaction[J]. Economic Geology, 2008, 103(8): 1613-1640.
[266]
王偲瑞, 杨立强, 孔鹏飞. 焦家断裂渗透性结构与金矿床群聚机理: 构造应力转移模拟[J]. 岩石学报, 2016, 32(8): 2494-2508.
[267]
王偲瑞, 杨立强, 成浩, 等. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟[J]. 岩石学报, 2020, 36(5): 1529-1546.
[268]
宋国政, 李山, 闫春明, 等. 焦家金矿田Ⅰ号主矿体地质特征及找矿方向[J]. 地质与勘探, 2018, 54(2): 219-229.

基金

国家自然科学基金项目(42130801)
国家自然科学基金项目(42272071)
科学技术部国家重点研发计划项目(2019YFA0708603)
高等学校学科创新引智计划2.0(BP0719021)
中国地质大学深时数字地球前沿科学中心“深时数字地球”中央高校科技领军人才团队项目(2652023001)
地质过程与矿产资源国家重点实验室专项(MSFGPMR201804)

评论

PDF(10120 KB)

Accesses

Citation

Detail

段落导航
相关文章

/