重建南海27 Ma以来高分辨率碳酸盐补偿深度

王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞

PDF(4027 KB)
PDF(4027 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 500-510. DOI: 10.13745/j.esf.sf.2024.1.35
环境变化与生物圈层相互作用

重建南海27 Ma以来高分辨率碳酸盐补偿深度

作者信息 +

High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma

Author information +
History +

摘要

新生代海洋碳酸盐补偿深度(CCD)的重建长期受到学术界的广泛关注。本研究以南海14个站位20个钻孔的综合大洋钻探计划(IODP)物质数据与年龄-深度模型,恢复了对应钻孔的古水深,计算了碳酸盐累积速率(CAR),基于线性回归的方法,重建了南海27 Ma以来CCD变化。研究结果显示:南海在海盆拉张形成期(27~18 Ma)出现了CCD超过2 000 m大幅度的下降;在随后的中中新世气候适宜期(MMCO)期间,南海CCD出现800 m 变浅。8 Ma以来南海CCD演化和赤道太平洋的演化呈现了不同的演化趋势:前者在3 500~4 000 m范围内波动,后者则从4 000 m持续下降到4 500 m左右。27 Ma之前,广泛的陆源输入和上升洋流发育导致南海出现浅的CCD。27~18 Ma时期的构造拉张导致的海盆加深,同时上升洋流减弱,被解释为该时期CCD下降的主要因素。MMCO期间气候驱动下的海平面波动导致了碳酸盐沉积核心区域的变化,是造成CCD波动的重要原因。8 Ma以来南海和太平洋CCD的差异演化是太平洋底水与南海底水的交换不畅的结果。

Abstract

The reconstruction of carbonate compensation depth (CCD) in the Cenozoic Ocean has been a focus of attention from the academic community. In this paper, based on the IODP (Integrated Ocean Drilling Program) substances data and age-depth models from 20 boreholes at 14 sites in the South China Sea, the paleo-water depths in the boreholes were restored, the carbonate accumulation rate (CAR) was calculated, and CCD changes in the South China Sea since 27 Ma were reconstructed using linear regression method. Results showed that CCD in the South China Sea significantly decreased by more than 2000 m during the basin stretching period (27-18 Ma), while during Middle Miocene Climate Optimum (MMCO) it became shallower by 800 m. Since 8 Ma, CCDs in the South China Sea and the equatorial Pacific Ocean exhibited different evolutionary trends, with the former fluctuating between 3500-4000 m and the latter continuing to decline from 4000 m to ~4500 m. Prior to 27 Ma, extensive terrigenous input and development of upwelling led to shallow CCD in the South China Sea. The deepening of the sea basin and the weakening of the upwelling caused by tectonic tension during 27-18 Ma were interpreted as the main factors contributing to the decline of CCD during this period. Climate-driven sea-level fluctuations during MMCO led to changes in the core region of carbonate deposition, which was an important reason for CCD fluctuations. The differential evolution of CCD in the South China Sea and the Pacific Ocean since 8 Ma was the result of poor bottom water exchange between the Pacific Ocean and the South China Sea.

关键词

碳酸盐补偿深度(CCD) / 中国南海 / 碳循环 / 边缘海

Key words

carbonate compensation depth (CCD) / South China Sea / carbon cycle / marginal sea

中图分类号

P736

引用本文

导出引用
王家昊 , 胡修棉 , 蒋璟鑫 , . 重建南海27 Ma以来高分辨率碳酸盐补偿深度. 地学前缘. 2024, 31(1): 500-510 https://doi.org/10.13745/j.esf.sf.2024.1.35
Jiahao WANG, Xiumian HU, Jingxin JIANG, et al. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma[J]. Earth Science Frontiers. 2024, 31(1): 500-510 https://doi.org/10.13745/j.esf.sf.2024.1.35

参考文献

[1]
BRAMLETTE M N. Pelagic sediments[J]. Oceanography, 1961, 67: 345-366.
[2]
LYLE M. Neogene carbonate burial in the Pacific Ocean[J]. Paleoceanography, 2003, 18(3): 2002PA000777.
[3]
DUTKIEWICZ A, MÜLLER R D. The carbonate compensation depth in the South Atlantic Ocean since the Late Cretaceous[J]. Geology, 2021, 49(7): 873-878.
[4]
PENMAN D E, TURNER S K, SEXTON P F, et al. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum[J]. Nature Geoscience, 2016, 9(8): 575-580.
[5]
PÄLIKE H, LYLE M W, NISHI H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614.
[6]
DERRY L A. Carbonate weathering, CO2 redistribution, and Neogene CCD and pCO2 evolution[J]. Earth and Planetary Science Letters, 2022, 597: 117801.
[7]
HSU K J, WEISSERT H J. South Atlantic paleoceanography[M]. Cambridge: Cambridge University Press, 1985:1-350.
[8]
BERGER W H. Deep sea carbonates: dissolution facies and age-depth constancy[J]. Nature, 1972, 236(5347): 392-395.
[9]
VAN ANDEL T H, THIEDE J, SCLATER J G, et al. Depositional history of the South Atlantic Ocean during the last 125 million years[J]. The Journal of Geology, 1977, 85(6): 651-698.
[10]
MELGUEN M, LE PICHON X, SIBUET J C. Paleoenvironnement de l’Atlantique sud[J]. Bulletin de la Société Géologique de France, 1978, S7-XX(4): 471-489.
[11]
CAMPBELL S M, MOUCHA R, DERRY L A, et al. Effects of dynamic topography on the Cenozoic carbonate compensation depth[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1025-1034.
[12]
SCHROEDER K, CHIGGIATO J, JOSEY S A, et al. Rapid response to climate change in a marginal sea[J]. Scientific Reports, 2017, 7(1): 4065.
[13]
李粹中. 南海深水碳酸盐沉积作用[J]. 沉积学报, 1989, 7(2): 35-43.
[14]
MIAO Q, THUNELL R C, ANDERSON D M. Glacial-Holocene carbonate dissolution and sea surface temperatures in the south China and Sulu seas[J]. Paleoceanography, 1994, 9(2): 269-290.
[15]
张江勇, 周洋, 陈芳, 等. 南海北部表层沉积物碳酸钙含量及主要钙质微体化石丰度分布[J]. 第四纪研究, 2015, 35(6): 1366-1382.
[16]
翦知湣, 田军. 南海海盆演变与深部海流[J]. 科技导报, 2020, 38(18): 52-56.
[17]
MÜLLER R D, CANNON J, WILLIAMS S, et al. PyBacktrack 1.0: a tool for reconstructing paleobathymetry on oceanic and continental crust[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(6): 1898-1909.
[18]
汪品先. 南海深部过程的探索[J]. 科技导报, 2020, 38(18): 6-20.
[19]
吴哲, 张丽丽, 朱伟林, 等. 南海北部白垩纪—渐新世早期沉积环境演变及构造控制[J]. 古地理学报, 2022, 24(1): 73-84.
[20]
朱作飞, 闫义, 赵奇. 古南海俯冲过程:婆罗洲晚白垩世—渐新世地层沉积记录[J]. 大地构造与成矿学, 2022, 46(3): 552-568.
[21]
MA R, LIU C, LI Q, et al. Calcareous nannofossil changes in response to the spreading of the South China Sea basin during Eocene-Oligocene[J]. Journal of Asian Earth Sciences, 2019, 184: 103963.
[22]
BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 599-611.
[23]
王桂华, 田纪伟. 南海深层水的来龙去脉[J]. 科技导报, 2020, 38(18): 21-25.
[24]
VAN ANDEL T H, HEATH G R, MOORE T C. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data[J]. GSA Memoir, 1975, 143: 1-134.
[25]
CONGRESS I O, SEARS M. Oceanography: invited lectures presented at the International Oceanographic Congress held in New York, 31 August-12 September 1959[M]. Washington: American Association for the Advancement of Science, 1961: 1-676.
[26]
TAYLOR B, DENNIS H, 齐慧琴, 等. 南海盆地的构造演化[J]. 海洋地质译丛, 1981(1): 1-17.
[27]
WESSEL P, LUIS J F, UIEDA L, et al. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
[28]
FRIGOLA A, PRANGE M, SCHULZ M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4): 1607-1626.
[29]
MILLER K G, MOUNTAIN G S, BROWNING J V, et al. Cenozoic global sea level, sequences, and the New Jersey Transect: results from coastal plain and continental slope drilling[J]. Reviews of Geophysics, 1998, 36(4): 569-601.
[30]
LI Q, WANG P, ZHAO Q, et al. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea[J]. Marine Geology, 2006, 230(3): 217-235.
[31]
LI Q, JIAN Z, LI B. Oligocene-Miocene planktonic foraminifer biostratigraphy, Site 1148, northern South China Sea[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2004, 184: 1-26.
[32]
WOODRUFF F, SAVIN S. Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleoclimatic cycles, and sediment preservation[J]. Paleoceanography, 1991, 6(6): 755-806.
[33]
陈荣华, 徐建, 孟翊, 等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报, 2003(2): 48-56.
[34]
HARRIS K E, DEGRANDPRE M D, HALES B. Aragonite saturation state dynamics in a coastal upwelling zone[J]. Geophysical Research Letters, 2013, 40(11): 2720-2725.
[35]
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[36]
MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz134.
[37]
STEINTHORSDOTTIR M, COXALL H K, DE BOER A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004037.
[38]
STEINTHORSDOTTIR M, JARDINE P E, REMBER W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1): e2020-PA003900.
[39]
YOU Y, HUBER M, MÜLLER R D, et al. Simulation of the middle miocene climate optimum[JL]. Geophysical Research Letters, 2009, 36(4): L04702.
[40]
SANGIORGI F, QUAIJTAAL W, DONDERS T H, et al. Middle miocene temperature and productivity evolution at a Northeast Atlantic Shelf Site (IODP U1318, Porcupine Basin): global and regional changes[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2020PA004059.
[41]
CHEN W H, HUANG C Y, LIN Y J, et al. Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon Strait since Middle Miocene[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 195-225.
[42]
张桂林. 18.5 Ma 以来南海海平面变化特征[D]. 成都: 成都理工大学, 2019.
[43]
ROTH J M, DROXLER A W. The caribbean carbonate crash at the middle to late miocene transition: linkage to the establishment of the modern global ocean conveyor[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 165: 249-273.
[44]
TIAN J, ZHAO Q, WANG P, et al. Astronomically modulated Neogene sediment records from the South China Sea[J]. Paleoceanography, 2008, 23(3): PA3210.

基金

国家自然科学基金项目(42050102)

评论

PDF(4027 KB)

Accesses

Citation

Detail

段落导航
相关文章

/