陕北靖边高铬地下水中硝酸根分布及来源

郭华明, 尹嘉鸿, 严松, 刘超

PDF(6595 KB)
PDF(6595 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 384-399. DOI: 10.13745/j.esf.sf.2024.1.24
沉积盆地分析与多种能源勘探

陕北靖边高铬地下水中硝酸根分布及来源

作者信息 +

Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi

Author information +
History +

摘要

天然高铬地下水通常含有较高浓度的硝酸根,然而高铬地下水中硝酸根来源及其联系却并不清楚。本文以陕北黄土高原靖边西南地区的高铬地下水为研究对象,采集了不同深度的地下水和沉积物样品,并测试了地下水样品中的溶解Cr、主要阴阳离子、δ18O、δD、δ18O-NO3δ15N-NO3等以及沉积物的主要组分和可溶性组分。研究结果表明,研究区地下水的水化学组分主要受水文地质条件的影响。第四系黄土潜水水化学类型主要为HCO3-Na型和HCO3-Ca-Mg型;白垩系环河组、洛河组砂岩承压水水化学类型复杂,主要为HCO3-SO4-Cl-Na-Mg型、HCO3-SO4-Na-Mg型、SO4-Cl-Na-Mg型,地下水处于偏碱性、氧化的环境,具有较高的可溶盐含量。潜水的水化学组分主要来自含水层中硅酸盐风化;承压水水化学组分主要来源于蒸发盐的溶解。垂向上,承压水中硝酸根的平均浓度高于潜水和地表水;地下水硝酸根浓度超标率在研究区从东北到西南呈现高-低-高的趋势;沉积物中可溶性硝酸根与地下水样品在深度上具有相似的变化规律,表明地下水硝酸根主要来源于沉积物。δ18O-NO3δ15N-NO3结果表明,硝化反应是研究区氮素循环转化的主要过程。在偏碱性氧化性地下水环境中,受溶解氧、硝酸根和硝化反应等多种因素的共同作用,铬趋于从岩石中氧化溶解,迁移进入地下水中。

Abstract

Natural high-chromium (Cr) groundwater usually contains high concentration of nitrate, but the source of nitrate and its relationship to Cr enrichment are unclear. In this study, water and sediment samples were collected at different depths from the high-Cr region of southwestern Jingbian, Loess Plateau, northern Shaanxi, and the dissolved Cr, soluble ionic species, δ18O, δD, δ18O-NO3, δ15N-NO3, and main and soluble sediment components were analyzed. Unconfined groundwater from Quaternary loess aquifers was mainly of HCO3-Na and HCO3-Ca-Mg types. Confined groundwater from sandstone aquifers of the Cretaceous Huanhe-Luohe Formations was of complex hydrochemical types, mainly HCO3-SO4-Cl-Na-Mg, HCO3-SO4-Na-Mg and SO4-Cl-Na-Mg types. The groundwater environments were weakly alkaline and oxic, with high concentrations of dissolved salts. The hydrochemical components of unconfined groundwater mainly derived from silicate weathering, while dissolution of evaporites mainly controlled the chemistry of confined groundwater. The average concentration of nitrate in confined groundwater was higher compared to unconfined groundwater and surface water. Spatial distribution of nitrate concentrations in groundwater showed a high-low-high trend from northeast to southwest in the study area. Nitrate contents in sediment and groundwater samples had similar variation trends with depth, indicating that nitrate in groundwater mainly originated from aquifer sediments. δ18O-NO3 and δ15N-NO3 values indicated that nitrification was the main process of nitrogen cycling and transformation in groundwater systems. Under alkaline, oxic groundwater environments, the presence of dissolved oxygen, nitrate, and nitrification was conducive to chromium oxidation in aquifer solids and release of Cr(VI) into groundwater.

关键词

地下水 / 硝酸根 / 六价铬 / 水文地球化学 / 氮氧同位素

Key words

groundwater / nitrate / hexavalent chromium / hydrogeochemistry / nitrogen and oxygen isotopes

中图分类号

P641.11;P641.3

引用本文

导出引用
郭华明 , 尹嘉鸿 , 严松 , . 陕北靖边高铬地下水中硝酸根分布及来源. 地学前缘. 2024, 31(1): 384-399 https://doi.org/10.13745/j.esf.sf.2024.1.24
Huaming GUO, Jiahong YIN, Song YAN, et al. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi[J]. Earth Science Frontiers. 2024, 31(1): 384-399 https://doi.org/10.13745/j.esf.sf.2024.1.24

参考文献

[1]
张洪, 王五一, 李海蓉, 等. 地下水硝酸盐污染的研究进展[J]. 水资源保护, 2008, 24(6): 7-11, 67.
[2]
LINGLE D A, KEHEW A E, KRISHNAMURTHY R V. Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA[J]. Applied Geochemistry, 2017, 78(1): 334-342.
[3]
KELLEY C J, KELLER C K, EVANS R D, et al. Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field[J]. Soil Biology & Biochemistry, 2013, 57: 731-738.
[4]
CAO S, FEI Y, TIAN X, et al. Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model[J]. Environmental science and pollution research international, 2021, 28(35): 48343-48361.
[5]
CUI Y, WANG J, HAO S. Spatial variability of nitrate pollution and its sources in a hilly basin of the Yangtze River based on clustering[J]. Scientific Reports, 2021, 11(1): 1-10.
[6]
COYTE R M, MCKINLEY K L, JIANG S, et al. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA[J]. Science of the Total Environment, 2020, 711: 135135.
[7]
NRIAGU J O, NIEBOER E. Chromium in the natural and human environments[M]. New York: John Wiley & Sons, 1988.
[8]
XIE Y, HOLMGREN S, ANDREWS D M K, et al. Evaluating the impact of the U.S. National Toxicology Program: a case study on hexavalent chromium[J]. Environmental Health Perspectives, 2017, 125(2): 181-188.
[9]
LILLI M A, MORAETIS D, NIKOLAIDIS N P, et al. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin[J]. Journal of Hazardous Materials 2015, 281: 12-19.
[10]
NAMGUNG S, KWON M J, QAFOKU N P, et al. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation[J]. Environmental Science & Technology, 2014, 48(18): 10760-10768.
[11]
MANNING A H, MILLS C T, MORRISON J M, et al. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA[J]. Applied Geochemistry, 2015, 62: 186-199.
[12]
PAPAZOTOS P, VASILEIOU E, PERRAKI M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: the case of the Psachna basin, central Euboea, Greece[J]. Environmental Monitoring and Assessment, 2019, 191(5): 317.
[13]
KAZAKIS N, KANTIRANIS N, VOUDOURIS K S, et al. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater[J]. Science of the Total Environment, 2015, 514: 224-238.
[14]
MILLS C T, MORRISON J M, GOLDHABER M B, et al. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater[J]. Applied Geochemistry, 2011, 26(8): 1488-1501.
[15]
PAPAZOTOS P, VASILEIOU E, PERRAKI M. Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: the case of the Gerania Mountains, NE Peloponnese, Greece[J]. Applied Geochemistry, 2020, 121: 104697.
[16]
OBEIDAT M, AWAWDEH M, AL-KHARABSHEH N, et al. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition[J]. Journal of Arid Land, 2021, 13(4): 350-374.
[17]
SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 2002, 296(5577): 2373-2376.
[18]
COOPER G R C. Oxidation and toxicity of chromium in ultramafic soils in Zimbabwe[J]. Applied Geochemistry, 2002, 17(8): 981-986.
[19]
李欣艳, 陈凯, 葛佳亮, 等. 靖边县水源地区域地下水环境变化研究[J]. 水资源与水工程学报, 2020, 31(2): 36-41.
[20]
徐春英, 李玉中, 郝卫平, 等. 反硝化细菌法结合痕量气体分析仪/同位素比质谱仪分析水体硝酸盐氮同位素组成[J]. 分析化学, 2012, 40(9): 1360-1365.
[21]
郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75.
[22]
王泽文, 邱淑芳. 一类流域点污染源识别的稳定性与数值模拟[J]. 水动力学研究与进展A辑, 2008, 23(4): 364-371.
[23]
贺强, 孙从建, 吴丽娜, 等. 基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文, 2018, 38(1): 58-66.
[24]
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
[25]
WANG Z, GUO H, XIU W, et al. High arsenic groundwater in the Guide basin, northwestern China: distribution and genesis mechanisms[J]. Science of the Total Environment, 2018, 640/641(1): 194-206.
[26]
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
[27]
王振. 青海贵德盆地高砷地下水分布和成因探究[D]. 北京: 中国地质大学(北京), 2019.
[28]
GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
[29]
朱欣然, 刘立, 贾士琚, 等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征: 以靖边县龙洲乡露头为例[J]. 世界地质, 2018, 37(3): 702-711.
[30]
翁海成. 基于氮氧同位素的高砷地下水氮来源、 转化及富砷意义[D]. 北京: 中国地质大学(北京), 2019.
[31]
袁溶潇. 内蒙古河套盆地含水层沉积物可溶性组分与可溶性砷的分布规律研究[D]. 北京: 中国地质大学(北京), 2017.
[32]
谢延玲. 鄂尔多斯盆地中部靖边地区水化学成分演化规律研究[D]. 西安: 西北大学, 2008.
[33]
LOHSE K A, SANDERMAN J, AMUNDSON R. Identifying sources and processes influencing nitrogen export to a small stream using dual isotopes of nitrate[J]. Water Resources Research, 2013, 49(9): 5715-5731.
[34]
SUN L, LIANG X, JIN M, et al. Ammonium and nitrate sources and transformation mechanism in the Quaternary sediments of Jianghan Plain, China[J]. Science of the Total Environment, 2021, 774: 145131.
[35]
TORRES-MARTíNEZ J A, MORA A, MAHLKNECHT J, et al. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model[J]. Environmental Pollution, 2021, 269(602): 115445.
[36]
KENDALL C, ELLIOTT E M, WANKEL S D. Tracing anthropogenic inputs of nitrogen to ecosystems[M]//MICHENER R, LAJTHA K. Stable isotopes in ecology and environmental science. Oxford: Blackwell Publishing Ltd, 2007: 375-449.
[37]
JüRGEN B, OTTO S, SUSANNE V, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4): 413-424.
[38]
XUE D, BOTTE J, DE BAETS B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J]. Water Research, 2009, 43(5): 1159-1170.
[39]
MA B, HUANG T, LI J, et al. Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone[J]. Catena, 2021, 198: 105045.
[40]
ZHOU X, JIANG Y. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4): 389-395.
[41]
WANG D. Basis for use of nitrogen isotopes to identify nitrogen contamination of groundwater[J]. Acta Geoscientia Sinica, 1997, 18(2): 220-223.
[42]
ZUO R, PAN M, LI J, et al. Biogeochemical transformation processes of iron, manganese, ammonium under coexisting conditions in groundwater based on experimental data[J]. Journal of Hydrology, 2021, 603(Part C): 127120.
[43]
AN Q, JIN L, DENG S, et al. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms[J]. Environmental Science and Pollution Reaearch, 2021, 28(24): 31218-31229.
[44]
MCMAHON P B, BELITZ K, REDDY J E, et al. Elevated manganese concentrations in United States groundwater, role of land surface-soil-aquifer connections[J]. Environmental Science & Technology, 2019, 53(1): 29-38.
[45]
MILLS C T, GOLDHABER M B. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks[J]. Science of the Total Environment, 2012, 435/436: 363-373.

基金

国家自然科学基金项目(42130509)

评论

PDF(6595 KB)

Accesses

Citation

Detail

段落导航
相关文章

/